上一题的模板应用,好久没做图论,结果建图一塌糊涂。。。
题意,给出一个矩阵,求从左上角到右下角走k次使路上所得的权值最大,其中经过一个权值后,该点权值清零。
思路:建图,每一个格子为一个点,同时衍生另外一个点,用来存清零后的路线,则每个点有两条路,一条是容量为1,权值为给出的值,一条为容量为k,权值为0;
因为求得是最大,所以建图的时候用1000减去原来的数,求出的最小费再用k*2(n-1)*1000减去,所得的值就为最大值了。
算是理解一下别人的模板吧,建图用时间比较长,最后建完图后,发现TLE了,结果去把范围给开大后,AC了,难道范围小了不应该RE么。。。囧
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> using namespace std; #define typef int #define typec int #define maxn 6000 #define maxm 30005 #define N maxn + 2 #define E maxm * 4 + 4 const typef inff = 0x3f3f3f3f; const typec infc = 0x3f3f3f3f; int map[55][55]; struct network { int nv, ne, pnt[E], nxt[E]; int vis[N], que[N], head[N], pv[N], pe[N]; typef flow, cap[E]; typec cost, dis[E], d[N]; void addedge(int u, int v, typef c, typec w) { pnt[ne] = v; cap[ne] = c; dis[ne] = +w; nxt[ne] = head[u]; head[u] = (ne++); pnt[ne] = u; cap[ne] = 0; dis[ne] = -w; nxt[ne] = head[v]; head[v] = (ne++); } int mincost(int src, int sink) { int i, k, f, r; typef mxf; for (flow = 0, cost = 0;;) { memset(pv, -1, sizeof(pv)); memset(vis, 0, sizeof(vis)); for (i = 0; i < nv; ++i) d[i] = infc; d[src] = 0; pv[src] = src; vis[src] = 1; for (f = 0, r = 1, que[0] = src; r != f;) { i = que[f++]; vis[i] = 0; if (N == f) f = 0; for (k = head[i]; k != -1; k = nxt[k]) if (cap[k] && dis[k] + d[i] < d[pnt[k]]) { d[pnt[k]] = dis[k] + d[i]; if (0 == vis[pnt[k]]) { vis[pnt[k]] = 1; que[r++] = pnt[k]; if (N == r) r = 0; } pv[pnt[k]] = i; pe[pnt[k]] = k; } } if (-1 == pv[sink]) break; for (k = sink, mxf = inff; k != src; k = pv[k]) if (cap[pe[k]] < mxf) mxf = cap[pe[k]]; flow += mxf; cost += d[sink] * mxf; for (k = sink; k != src; k = pv[k]) { cap[pe[k]] -= mxf; cap[pe[k] ^ 1] += mxf; } } return cost-1000+map[1][1]; } void build(int v,int n,int k) { nv = v; ne = 0; memset(head, -1, sizeof(head)); int x, y; typec w; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) { scanf("%d",&map[i][j]); map[i][j]=1000-map[i][j]; } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) { if(i-1>=1&&j-1<=0) { addedge(n*(i-2)+j, n*(i-1)+j, 1, map[i][j]); addedge(n*(i-2)+j,n*(i-1)+j+n*n,k,1000); addedge(n*(i-1)+j+n*n, n*(i-1)+j, k, 0); } else if(j-1>=1&&i-1<=0) { addedge(n*(i-1)+j-1,n*(i-1)+j, 1, map[i][j]); addedge(n*(i-1)+j-1,n*(i-1)+j+n*n,k,1000); addedge(n*(i-1)+j+n*n, n*(i-1)+j, k, 0); } //2*n+n*n else if(j-1>=1&&i-1>=1) { addedge(n*(i-1)+j-1,n*(i-1)+j+n*n,k,0); addedge(n*(i-2)+j, n*(i-1)+j+n*n,k,0); addedge(n*(i-2)+j, n*(i-1)+j, k, 1000); addedge(n*(i-1)+j-1,n*(i-1)+j, k, 1000); addedge(n*(i-1)+j+n*n,n*(i-1)+j, 1, map[i][j]); } } addedge(0, 1, k, 1000); //答案加上map【1】【1】; addedge(n*n, 2*n*n+1, k, 0); } } g; int n, m,k; int main() { //freopen("t.txt", "r", stdin); scanf("%d%d", &n, &k); g.build(2*n*n + 2,n,k); if(k==0) printf("0\n"); else printf("%d\n",k*(2*n-1)*1000-g.mincost(0, 2*n*n + 1)); return 0; }