zoukankan      html  css  js  c++  java
  • 实现物体绕不同轴旋转,并可以外部调用的函数

    第一个文件,声明枚举类型,分别为均匀变化和加速变化

    1
    2
    3
    4
    5
    6
    7
    8
    using UnityEngine;
    using System.Collections;
     
    public enum CTRotationType
    {
        Uniform,
        AccelerateUniformly
    }

    第二个文件:主函数,实现围绕轴变化的两个函数,分别为均匀变化和加速变化

     

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    using UnityEngine;
    using System.Collections;
     
    public class CTRotation : MonoBehaviour {
     
     // Use this for initialization
     void Start () {
      
     }
      
     // Update is called once per frame
     void Update () {
            if (isRotating)
            {
                executeRotate();
            }
        }
     
        bool isRotating = false;
     
        Quaternion definedRotation = new Quaternion(0, 0, 0,0);
      
        Vector3 rotateVector = new Vector3(1,0,0);
      
        float rotateVelocity = 0;
      
     float accelerateDuration = 0;
     float leftDuration = 0;
     float rotateDuration = 0;
      
        int rotateAxis = 0;
     float angleRange = 0;
     float deltaRotate = 0;//0;
      
      
     // acceleration when it is in the accelerating process.
        float rotateAcceleration = 0;
     
        CTRotationType rotateType;
      
     //int RotateType = 0;
     
        private void initRotateArgument( float _initAngleRange, int _initRotateAxis, float _initRotateDuration)
        {
      rotateAxis = _initRotateAxis;
            rotateDuration = _initRotateDuration;
            leftDuration = _initRotateDuration;
      angleRange = _initAngleRange;
      rotateType = CTRotationType.Uniform;
        }
     
        public void RotateTo(float _angleRange, int _axis, float _duration)
        {
      print("in the rotateto");
            isRotating = false;
            rotateType = CTRotationType.Uniform;
      //RotateType = 0;
       
      initRotateArgument(_angleRange, _axis, _duration);
       
      switch(rotateAxis)
      {
       case 0: //rotate around X axis
       {
        rotateVector = Vector3.right;
        break;
       }
       case 1://rotate around Y axis
       {
        rotateVector = Vector3.up;
        break;
       }
       case 2://rotate around Z axis
       {
        rotateVector = Vector3.forward;
        break;
       }
       default:
        break;
      }
       
      deltaRotate = angleRange/rotateDuration;
       
            isRotating = true;
        }
     
        public void RotateTo(float _angleRange, int _axis, float _duration, float _accelerateDuration)
        {
            isRotating = false;
            rotateType = CTRotationType.AccelerateUniformly;
      //RotateType = 1;
     
      rotateAcceleration = 1/((rotateDuration - accelerateDuration)*accelerateDuration);
            initRotateArgument(_angleRange, _axis, _duration);
       
      switch(rotateAxis)
      {
       case 0: //rotate around X axis
       {
        rotateVector = Vector3.right;
        break;
       }
       case 1://rotate around Y axis
       {
        rotateVector = Vector3.up;
        break;
       }
       case 2://rotate around Z axis
       {
        rotateVector = Vector3.forward;
        break;
       }
       default:
        break;
      }
     
            accelerateDuration = _accelerateDuration;
       
         //   deltaRotate = angleRange/(_duration - _accelerateDuration*2);
     
            isRotating = true;
        }
     
        void executeRotate()
        {
            switch (rotateType)
            {
                //case 0://CTMoveType.Uniform:
       case CTRotationType.Uniform:
                    uniformRotate();
                    break;
     
                //case 1://CTMoveType.AccelerateUniformly:
       case CTRotationType.AccelerateUniformly:
                    accelerateRotate();
                    break;
            }
            
            leftDuration -= Time.deltaTime;
           /* if (leftDuration <= 0)
            {
                transform.position = targetPosition;
                isMoving = false;
            }*/
        }
     
        private void accelerateRotate()
        {
      print(leftDuration);
            if (leftDuration > (rotateDuration - accelerateDuration))
            {
       rotateVelocity = (float)((angleRange*(rotateDuration - leftDuration))*rotateAcceleration);
              //  transform.Rotate(rotateVelocity * Time.deltaTime*rotateVector, Space.World);
       transform.Rotate(rotateVelocity * rotateVector*Time.deltaTime, Space.World);
            }
            else if (leftDuration > accelerateDuration)
            {
       rotateVelocity = (float)((angleRange*accelerateDuration)*rotateAcceleration);
                transform.Rotate(rotateVelocity*rotateVector*Time.deltaTime, Space.World);
            }
            else if (leftDuration > 0)
            {
       rotateVelocity= (float)((angleRange*leftDuration)*rotateAcceleration);
       transform.Rotate(rotateVelocity*rotateVector*Time.deltaTime, Space.World);
            }
      else
       isRotating = false;
        }
     
        private void uniformRotate()
        {
      print(leftDuration);
      //if(leftDuration)
      if(leftDuration > 0)
      {
       transform.Rotate(rotateVector*deltaRotate*Time.deltaTime, Space.World);
       //transform.Rotate(rotateVector * Time.deltaTime*deltaRotate, Space.World);
      }
      else
       isRotating = false;
        }
    }

    第三个文件,测试脚本

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    using UnityEngine;
    using System.Collections;
     
    public class TestRotationScript : MonoBehaviour {
     
     // Use this for initialization
     void Start () {
      
     }
      
     // Update is called once per frame
     void Update () {
           
     }
     
     void OnGUI ()
        {
      CTRotation ttscript;
      CTChangeAlpha colorScript;
      GameObject testObject = GameObject.Find("TestCube");
            //Component testObjectScript = testObject.GetComponent("CRotation");
            ttscript = (CTRotation)testObject.GetComponent("CTRotation");
      colorScript = (CTChangeAlpha)testObject.GetComponent("CTChangeAlpha");
       
       if (GUI.Button (new Rect (20,40,80,20), "UniRotate")) {
           ttscript.RotateTo(3600f, 2, 2f);
      }
       
       if(GUI.Button(new Rect(20,60,80,20),"AccRotate")){
      ttscript.RotateTo(3600f, 2, 2f, 0.5f);
       }
       
        if(GUI.Button(new Rect(20,80,80,20),"Color")){
         colorScript.ColorTo(2,5.0f);
        }
        }
    }

    其中:第一个和第二脚本赋给目标物体;第三个脚本赋给任何一个物体作为测试物体使用

    代码目的是方便外部调用和函数重用;注意isRotating参数的使用

  • 相关阅读:
    Flink集群模式部署及案例执行
    Solr查询解析及内核剖析
    Spark Streaming流计算核心概念
    Kaldi语音识别CVTE模型实战
    Kaldi基础代码库及建模
    Kaldi样例实战
    Solr文本分析剖析【文本分析、分词器详解、自定义文本分析字段及分词器】
    Flink场景分析与比较【事件驱动、数据分析、数据管道】
    什么是Apache Flink实时流计算框架?
    基于Tesseract实现图片文字识别
  • 原文地址:https://www.cnblogs.com/android-blogs/p/6038093.html
Copyright © 2011-2022 走看看