zoukankan      html  css  js  c++  java
  • [Luogu] P3708 koishi的数学题

    (Link)

    Description

    输入一个整数(n),设(f(x) = sumlimits_{i=1}^n x mod {i}),你需要输出(f(1), f(2), ldots , f(n))((nle{10^6}))

    Solution

    (f(x)=sumlimits_{i=1}^n x mod {i}=sumlimits_{i=1}^n x-ilfloor{frac{x}{i}} floor=nx-sumlimits_{i=1}^nilfloor{frac{x}{i}} floor)

    (f(x-1)=n(x-1)-sumlimits_{i=1}^nilfloor{frac{x-1}{i}} floor)

    (f(x)-f(x-1)=n-sumlimits_{i=1}^ni(lfloor{frac{x}{i}} floor-lfloor{frac{x-1}{i}} floor)=n-sumlimits_{i=1}^ni[i|x]=n-sigma(x))

    累加,有(f(x)=nx-sumlimits_{i=1}^{x}sigma(i))

    (O(n))求出约数和即可。

    (约数和及约数个数和见一个巨佬的博客

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define ll long long
    
    int n, tot, vis[1000005], pr[250005];
    
    ll low[1000005], sd[1000005], sum[1000005];
    
    int read()
    {
    	int x = 0, fl = 1; char ch = getchar();
    	while (ch < '0' || ch > '9') { if (ch == '-') fl = -1; ch = getchar();}
    	while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0'; ch = getchar();}
    	return x * fl;
    }
    
    int main()
    {
    	n = read();
    	sd[1] = 1; low[1] = 1;
    	for (int i = 2; i <= n; i ++ )
    	{
    		if (!vis[i])
    		{
    			vis[i] = i;
    			pr[ ++ tot] = i;
    			low[i] = i + 1;
    			sd[i] = i + 1;
    		}
    		for (int j = 1; j <= tot; j ++ )
    		{
    			if (i * pr[j] > n || pr[j] > vis[i]) break;
    			vis[i * pr[j]] = pr[j];
    			if (i % pr[j]) sd[i * pr[j]] = 1ll * sd[i] * (1ll + pr[j]), low[i * pr[j]] = 1ll + pr[j];
    			else sd[i * pr[j]] = 1ll * sd[i] / low[i] * (low[i] * pr[j] + 1ll), low[i * pr[j]] = 1ll * low[i] * pr[j] + 1ll;
    		}
    	}
    	for (int i = 1; i <= n; i ++ )
    		sum[i] = sum[i - 1] + sd[i];
    	for (int i = 1; i <= n; i ++ )
    		printf("%lld ", 1ll * n * i - sum[i]);
    	return 0;
    }
    
  • 相关阅读:
    UML类图与面向对象设计原则
    java学习:用反射构造bean
    Lucene基础(一)--入门
    Lucene基础(二)--索引的操作
    Lucene基础(三)-- 中文分词及高亮显示
    Lucene基础(四)-- 结合数据库使用
    JMS
    深入浅出JMS(一)——JMS简介
    深入浅出JMS(二)——JMS的组成
    八大排序算法
  • 原文地址:https://www.cnblogs.com/andysj/p/13963329.html
Copyright © 2011-2022 走看看