zoukankan      html  css  js  c++  java
  • [Leetcode] DP-- 474. Ones and Zeroes

    In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

    For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

    Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

    Note:

    1. The given numbers of 0s and 1s will both not exceed 100
    2. The size of given string array won't exceed 600.

    Example 1:

    Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
    Output: 4
    
    Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
    

    Example 2:

    Input: Array = {"10", "0", "1"}, m = 1, n = 1
    Output: 2
    
    Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".

    Solution:

     1. 1st naive method two layer iterations of every element in the array

       for i to n:  

            for j to n:          

                judge the element can be formed m zeros and n ones          

               and then decrease m and n

    2. 2nd use DP

       (1) Define the subproblem
           DP[i][j] represents the maximum number represented with i zeros and j ones
       (2) Find the recursion
             state function:    dp[i][j] = max(dp[i][j],  1 + dp[i-zeros][j-ones])
       (3) Get the base case
             initialize dp[i][j] = 0       
     
       
     1    dp = [[0] *(n+1) for _ in range(m+1)]
     2         
     3         #print ("ttt: ",dp)
     4         for s in strs:
     5             dic = Counter(s)
     6             zeros = dic["0"]
     7             ones = dic["1"]
     8 
     9             for i in range(m, zeros-1, -1):
    10                 for j in range(n, ones-1, -1):
    11                     dp[i][j] = max(dp[i][j],  1 + dp[i-zeros][j-ones])
    12                     #print ("ddd: ", i, j, dp[i][j])
    13         return dp[m][n]
     
  • 相关阅读:
    0045算法笔记——【随机化算法】舍伍德随机化思想搜索有序表
    精进~如何成为很厉害的人
    哪些小习惯一旦养成终生受用?
    2016第24周四
    2016第24周三
    2016第24周二
    2016第24周一
    2016第23周日
    前端资源汇总
    2016第23周五
  • 原文地址:https://www.cnblogs.com/anxin6699/p/7115603.html
Copyright © 2011-2022 走看看