zoukankan      html  css  js  c++  java
  • POJ 3295, Tautology

    输入字符串为二叉树的先根遍历(Pre-order string),可采用堆栈或者递归。

    一般pre-order 字符串计算使用递归, post-order 字符串计算使用堆栈


    Description

    WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
    p, q, r, s, and t are WFFs
    if w is a WFF, Nw is a WFF
    if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
    The meaning of a WFF is defined as follows:
    p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
    K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below. Definitions of K, A, N, C, and E
      w  x   Kwx   Awx    Nw   Cwx   Ewx
      1  1   1       1         0      1        1
      1  0   0       1         0      0        0
      0  1   0       1         1      1        0
      0  0   0       0         1      1        1

    A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

    You must determine whether or not a WFF is a tautology.

    Input

    Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

    Output

    For each test case, output a line containing tautology or not as appropriate.

    Sample Input
    ApNp
    ApNq
    0

    Sample Output
    tautology
    not

    Source
    Waterloo Local Contest, 2006.9.30


    // POJ3295.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <string>
    using namespace std;

    static int pos = -1;
    bool WFF(const string& formula, int i)
    {
        
    ++pos;
        
    switch(formula[pos])
        {
        
    case 'p':
            
    return i & 1;
        
    case 'q':
            
    return (i >> 1& 1;
        
    case 'r':
            
    return (i >> 2& 1;
        
    case 's':
            
    return (i >> 3& 1;
        
    case 't':
            
    return (i >> 4& 1;
        
    case 'N':
            
    return !WFF(formula, i);
        
    case 'K':
            
    return WFF(formula, i) & WFF(formula, i);
        
    case 'A':
            
    return WFF(formula, i) | WFF(formula, i);
        
    case 'C':
            
    return !WFF(formula, i) | WFF(formula, i);
        
    case 'E':
            
    return WFF(formula, i) == WFF(formula, i);
        }
        
        
    return false;
    };

    bool isTautology(string formula)
    {
        
    for (int i = 0; i < 32++i)
        {
            pos 
    = -1;
            
    if (WFF(formula, i)==falsereturn false;;
        }
        
    return true;
    };

    int main(int argc, char* argv[])
    {
        
    string ln;
        
    while (cin >> ln && ln[0!= '0')
        {
            
    if (isTautology(ln)) cout << "tautology\n";
            
    else cout << "not\n";
        }
        
    return 0;
    }

  • 相关阅读:
    EF实现增删改查
    托管代码与非托管代码的区别
    堆、栈以及队列
    C#装箱和拆箱
    Leecode刷题之旅-C语言/python-349两个数组的交集
    Leecode刷题之旅-C语言/python-344反转字符串
    Leecode刷题之旅-C语言/python-217存在重复元素
    Leecode刷题之旅-C语言/python-206反转链表
    Leecode刷题之旅-C语言/python-204计数质数
    Leecode刷题之旅-C语言/python-203移除链表元素
  • 原文地址:https://www.cnblogs.com/asuran/p/1575379.html
Copyright © 2011-2022 走看看