zoukankan      html  css  js  c++  java
  • POJ 1836, Alignment

    Time Limit: 1000MS  Memory Limit: 30000K
    Total Submissions: 3283  Accepted: 963


    Description
    In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity.

    Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line.

     

    Input
    On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

    There are some restrictions:
    • 2 <= n <= 1000
    • the height are floating numbers from the interval [0.5, 2.5]

     

    Output
    The only line of output will contain the number of the soldiers who have to get out of the line.

     

    Sample Input
    8
    1.86 1.86 1.30621 2 1.4 1 1.97 2.2

    Sample Output
    4

    Source
    Romania OI 2002


    // POJ1836.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <algorithm>
    using namespace std;

    int main(int argc, char* argv[])
    {
        
    int N;
        scanf(
    "%d"&N);

        
    double ln[1000];
        
    for (int i = 0; i < N; ++i) scanf("%lf"&ln[i]);

        
    int DP[2][1000];
        fill(
    &DP[0][0],&DP[0][N],1);
        
    for (int j = 1; j < N; ++j)
        {
            
    for (int k = 0; k < j; ++k)
           if (ln[k] < ln[j] && DP[0][k] + 1 > DP[0][j]) DP[0][j] = DP[0][k] + 1;
        }
        fill(
    &DP[1][0],&DP[1][N],1);
        
    for (int j = N - 1; j >= 0--j)
        {
            
    for (int k = N - 1; k > j; --k)
         if (ln[k] < ln[j] && DP[1][k] + 1 > DP[1][j]) DP[1][j] = DP[1][k] + 1;
        }
        
    for (int j = 1; j < N; ++j) DP[0][j] = max(DP[0][j-1],DP[0][j]);
        
    for (int j = N - 2; j >= 0--j) DP[1][j] = max(DP[1][j+1],DP[1][j]);


        
    int mppl = N - max(DP[0][N-1], DP[1][0]);
        
    for (int i = 1; i < N - 1++i)
            mppl 
    = min(mppl, N - DP[0][i - 1- DP[1][i]);

        cout 
    << mppl << endl;
        
    return 0;
    }

  • 相关阅读:
    THU李健-机器学习与量化交易
    正则表达式
    微服务入门三:SpringCloud Alibaba
    生成动态验证码
    微服务入门二:SpringCloud(版本Hoxton SR6)
    微服务入门一:微服务基础知识
    Redis-基本概念、java操作redis、springboot整合redis,分布式缓存,分布式session管理等
    SpringBoot入门二:与Mybatis整合
    SpringBoot入门一:基础知识(环境搭建、注解说明、创建对象方法、注入方式、集成jsp/Thymeleaf、logback日志、全局热部署、文件上传/下载、拦截器、自动配置原理等)
    SpringMVC入门二:SSM整合(spring+springmvc+mybatis)
  • 原文地址:https://www.cnblogs.com/asuran/p/1582292.html
Copyright © 2011-2022 走看看