zoukankan      html  css  js  c++  java
  • leetcode--Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations.

    By listing and labeling all of the permutations in order,
    We get the following sequence (ie, for n = 3):

    1. "123"
    2. "132"
    3. "213"
    4. "231"
    5. "312"
    6. "321"

    Given n and k, return the kth permutation sequence.

    Note: Given n will be between 1 and 9 inclusive.

    public class Solution {
         /**
    	 * This is a trick problem. We need to use how a permutation is generated.<br>
    	 * Let us consider, for example, the first digit of the permutation.<br>
    	 * Number 1 on the first digit until (n - 1)! + 1-th permutation. and (n - 1)! is the last
    	 * permutation starts with 1. For the same reason 2*(n-1)!  is the last permutation starts with
    	 * number 2 and so on.  So, on the first digit of k-th permutation can be determined by
    	 * ((--k) / (n - 1)!). Recursively, we can find the other digits of the permutation.<br>
    	 * 	 
    	 * @param n --int, the number of digits in the permutation.
    	 * @param k --int, the k-th permutation which is looking for.
    	 * @return String --the permutation.
    	 * @author Averill Zheng
    	 * @version 2014-06-14
    	 * @since JDK 1.7
    	 */
    	public String getPermutation(int n, int k) {
    		List<Integer> num = new ArrayList<Integer>();
    		int count = 1;
    		//add the number in the ArrayList and calculate the factorial
    		for(int i = 0; i < n; ++i){
    			num.add((i + 1));
    			count *= (i + 1);
    		}
    		
    		//decrease k by 1
    		--k;
    		
    		//find each digit of the permutation.
    		StringBuffer stb = new StringBuffer();
    		for(int i = 0; i < n; ++i){
    			count /= (n - i);
    			//select an item from the ArrayList and add to the permutation. After that remove 
    			//the digit from the ArrayList since it has been added to the permutation.
    			int itemToBeAdded = num.remove(k / count);
    			stb.append(itemToBeAdded); 
    			k %= count;
    		}
    		return stb.toString();
        }
    }
    

      

      

  • 相关阅读:
    ZOJ4125 Sekiro
    ZOJ4118 Stones in the Bucket
    ZOJ4115 Wandering Robot
    ZOJ4113 Calandar
    【递归】N皇后问题 和 2n皇后问题 dfs
    7-18
    7_13
    二维前缀和
    64位整数乘法
    【分治】魔法石的诱惑
  • 原文地址:https://www.cnblogs.com/averillzheng/p/3788735.html
Copyright © 2011-2022 走看看