1、题目描述
给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例 1:
输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] 输出: [1,2,3,6,9,8,7,4,5]
示例 2:
输入: [ [1, 2, 3, 4], [5, 6, 7, 8], [9,10,11,12] ] 输出: [1,2,3,4,8,12,11,10,9,5,6,7]
2、题解
2.1、解法一
原理:递归
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
print("matrix:",matrix)
if matrix == []:
return []
m,n = len(matrix),len(matrix[0])
ret = []
# 上侧,右侧
for i in range(m):
if i== 0:
for j in range(n):
tmp = matrix[i][j]
ret.append(tmp)
else:
if m >1 and i != m-1:
tmp = matrix[i][n-1]
ret.append(tmp)
print("ret上:",ret)
# 下侧
if m >1:
l = reversed(matrix[m-1])
print(l)
for i in l:
ret.append(i)
# 左侧
if m >2 and n>1:
for i in range(m-2,0,-1):
ret.append(matrix[i][0])
print("ret:",ret)
# 新矩阵
new = []
for i in range(m):
if i != 0 and i != m-1:
tmp = []
for j in range(n):
if j != 0 and j != n-1:
tmp.append(matrix[i][j])
if tmp != []:
new.append(tmp)
print("new:",new)
if new != []:
r = self.spiralOrder(new)
print("r:",r)
ret.extend(r)
return ret
2.2、解法二
原理: 取首行,去除首行后,对矩阵翻转来创建新的矩阵,再递归直到新矩阵为[],退出并将取到的数据返回
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
# 取首行,去除首行后,对矩阵翻转来创建新的矩阵,
# 再递归直到新矩阵为[],退出并将取到的数据返回
ret = []
if matrix == []:
return ret
ret.extend(matrix[0]) # 上侧
new = [reversed(i) for i in matrix[1:]]
if new == []:
return ret
r = self.spiralOrder([i for i in zip(*new)])
ret.extend(r)
return ret