zoukankan      html  css  js  c++  java
  • NVIDIA---CUDA

    http://en.wikipedia.org/wiki/CUDA

    CUDA

    From Wikipedia, the free encyclopedia
     
     
    CUDA
    Developer(s) NVIDIA Corporation
    Stable release 6.0 / November 14, 2013; 4 days ago
    Operating system Windows XP and later,
    Mac OS XLinux
    Platform Supported GPUs
    Type GPGPU
    License Freeware
    Website www.nvidia.com/object/cuda_home_new.html

    CUDA (aka Compute Unified Device Architecture) is a parallel computing platform and programming model created by NVIDIA and implemented by the graphics processing units (GPUs) that they produce.[1]CUDA gives program developers direct access to the virtual instruction set and memory of the parallel computational elements in CUDA GPUs.

    Using CUDA, the GPUs can be used for general purpose processing (i.e., not exclusively graphics); this approach is known as GPGPU. Unlike CPUs, however, GPUs have a parallel throughput architecture that emphasizes executing many concurrent threads slowly, rather than executing a single thread very quickly.

    The CUDA platform is accessible to software developers through CUDA-accelerated libraries, compiler directives (such as OpenACC), and extensions to industry-standard programming languages, including C,C++ and Fortran. C/C++ programmers use 'CUDA C/C++', compiled with "nvcc", NVIDIA's LLVM-based C/C++ compiler,[2] and Fortran programmers can use 'CUDA Fortran', compiled with the PGI CUDA Fortran compiler from The Portland Group.

    In addition to libraries, compiler directives, CUDA C/C++ and CUDA Fortran, the CUDA platform supports other computational interfaces, including the Khronos Group's OpenCL,[3] Microsoft's DirectCompute, and C++ AMP.[4] Third party wrappers are also available for PythonPerlFortranJavaRubyLuaHaskell,MATLABIDL, and native support in Mathematica.

    In the computer game industry, GPUs are used not only for graphics rendering but also in game physics calculations (physical effects like debris, smoke, fire, fluids); examples include PhysX and Bullet. CUDA has also been used to accelerate non-graphical applications in computational biologycryptography and other fields by an order of magnitude or more.[5][6][7][8][9]

    CUDA provides both a low level API and a higher level API. The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and LinuxMac OS Xsupport was later added in version 2.0,[10] which supersedes the beta released February 14, 2008.[11] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForceQuadro and the Tesla line. CUDA is compatible with most standard operating systems. Nvidia states that programs developed for the G8x series will also work without modification on all future Nvidia video cards, due to binary compatibility.

    Example of CUDA processing flow
    1. Copy data from main mem to GPU mem
    2. CPU instructs the process to GPU
    3. GPU execute parallel in each core
    4. Copy the result from GPU mem to main mem

    Background[edit]

    The GPU, as a specialized processor, addresses the demands of real-time high-resolution 3D graphics compute-intensive tasks. As of 2012, GPUs have evolved into highly parallel multi-core systems allowing very efficient manipulation of large blocks of data. This design is more effective than general-purpose CPUs for algorithmswhere processing of large blocks of data is done in parallel, such as:

    Advantages[edit]

    CUDA has several advantages over traditional general-purpose computation on GPUs (GPGPU) using graphics APIs:

    • Scattered reads – code can read from arbitrary addresses in memory
    • Shared memory – CUDA exposes a fast shared memory region (up to 48KB per Multi-Processor) that can be shared amongst threads. This can be used as a user-managed cache, enabling higher bandwidth than is possible using texture lookups.[12]
    • Faster downloads and readbacks to and from the GPU
    • Full support for integer and bitwise operations, including integer texture lookups

    Limitations[edit]

    • CUDA does not support the full C standard, as it runs host code through a C++ compiler, which makes some valid C (but invalid C++) code fail to compile.[13][14]
    • Texture rendering is not supported (CUDA 3.2 and up addresses this by introducing "surface writes" to CUDA arrays, the underlying opaque data structure).
    • Copying between host and device memory may incur a performance hit due to system bus bandwidth and latency (this can be partly alleviated with asynchronous memory transfers, handled by the GPU's DMA engine)
    • Threads should be running in groups of at least 32 for best performance, with total number of threads numbering in the thousands. Branches in the program code do not affect performance significantly, provided that each of 32 threads takes the same execution path; the SIMD execution model becomes a significant limitation for any inherently divergent task (e.g. traversing a space partitioning data structure during ray tracing).
    • Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia[15]
    • Valid C/C++ may sometimes be flagged and prevent compilation due to optimization techniques the compiler is required to employ to use limited resources.
    • CUDA (with compute capability 1.x) uses a recursion-free, function-pointer-free subset of the C language, plus some simple extensions. However, a single process must run spread across multiple disjoint memory spaces, unlike other C language runtime environments.
    • CUDA (with compute capability 2.x) allows a subset of C++ class functionality, for example member functions may not be virtual (this restriction will be removed in some future release). [See CUDA C Programming Guide 3.1 – Appendix D.6]
    • Double precision floats (CUDA compute capability 1.3 and above)[16] deviate from the IEEE 754 standard: round-to-nearest-even is the only supported rounding mode for reciprocal, division, and square root. In single precisiondenormals and signalling NaNs are not supported; only two IEEE rounding modes are supported (chop and round-to-nearest even), and those are specified on a per-instruction basis rather than in a control word; and the precision of division/square root is slightly lower than single precision.

    Supported GPUs[edit]

    Compute capability table (version of CUDA supported) by GPU and card. Also available directly from Nvidia:

    Compute
    capability
    (version)
    GPUsCards
    1.0 G80, G92, G92b, G94, G94b GeForce 8800GTX/Ultra, 9400GT, 9600GT, 9800GT, Tesla C/D/S870, FX4/5600, 360M, GT 420
    1.1 G86, G84, G98, G96, G96b, G94, G94b, G92, G92b GeForce 8400GS/GT, 8600GT/GTS, 8800GT/GTS, 9600 GSO, 9800GTX/GX2, GTS 250, GT 120/30/40, FX 4/570, 3/580, 17/18/3700, 4700x2, 1xxM, 32/370M, 3/5/770M, 16/17/27/28/36/37/3800M, NVS290, NVS420/50
    1.2 GT218, GT216, GT215 GeForce 210, GT 220/240, FX380 LP, 1800M, 370/380M, NVS300, NVS 2/3100M
    1.3 GT200, GT200b GeForce GTX 260, GTX 275, GTX 280, GTX 285, GTX 295, Tesla C/M1060, S1070, Quadro CX, FX 3/4/5800
    2.0 GF100, GF110 GeForce (GF100) GTX 465, GTX 470, GTX 480, Tesla C2050, C2070, S/M2050/70, Quadro Plex 7000, Quadro 4000, 5000, 6000, GeForce (GF110) GTX 560 TI 448, GTX570, GTX580, GTX590
    2.1 GF104, GF106 GF108,GF114, GF116, GF119 GeForce 500M series, 610M, GT630M,GTX 670M, GeForce GTX 675M, GT 430, GT 440, GTS 450, GTX 460, GT 545, GTX 550 Ti, GTX 560, GTX 560 Ti, 605,615,620, Quadro 600, 2000
    3.0 GK104, GK106, GK107 GeForce GTX 770, GTX 760, GTX 690, GTX 680, GTX 670, GTX 660 Ti, GTX 660, GTX 650 Ti BOOST, GTX 650 Ti, GTX 650, GT 640, GT 630, GeForce GTX 780M, GeForce GTX 775M(for Apple OEM only), GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GT 755M(for Apple OEM only), GeForce GT 750M, GeForce GT 745M, GeForce GT 740M, GeForce GTX 680MX(for Apple OEM only), GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GTX 660M, GeForce GT 650M, GeForce GT 645M, GeForce GT 640M, Quadro K600, Quadro K2000, Quadro K4000, Quadro K5000, Quadro K2100M,Quadro K4100M,Quadro K5100M
    3.5 GK110, GK208 Tesla K40, K20X, K20, GeForce GTX TITAN, GTX780Ti, GTX 780, Quadro K510M, Quadro K610M, Quadro K6000, GT 640(Rev.2)

    A table of devices officially supporting CUDA:[15]

    Nvidia GeForce
    GeForce GTX TITAN
    GeForce GTX 780 Ti
    GeForce GTX 780
    GeForce GTX 770
    GeForce GTX 760
    GeForce GTX 690
    GeForce GTX 680
    GeForce GTX 670
    GeForce GTX 660 Ti
    GeForce GTX 660
    GeForce GTX 650 Ti BOOST
    GeForce GTX 650 Ti
    GeForce GTX 650
    GeForce GT 640
    GeForce GTX 590
    GeForce GTX 580
    GeForce GTX 570
    GeForce GTX 560 Ti
    GeForce GTX 560
    GeForce GTX 550 Ti
    GeForce GT 520
    GeForce GTX 480
    GeForce GTX 470
    GeForce GTX 465
    GeForce GTX 460
    GeForce GTX 460 SE
    GeForce GTS 450
    GeForce GT 440
    GeForce GT 430
    GeForce GT 420
    GeForce GTX 295
    GeForce GTX 285
    GeForce GTX 280
    GeForce GTX 275
    GeForce GTX 260
    GeForce GTS 250
    GeForce GTS 240
    GeForce GT 240
    GeForce GT 220
    GeForce 210/G210
    GeForce GT 140
    GeForce 9800 GX2
    GeForce 9800 GTX+
    GeForce 9800 GTX
    GeForce 9800 GT
    GeForce 9600 GSO
    GeForce 9600 GT
    GeForce 9500 GT
    GeForce 9400 GT
    GeForce 9400 mGPU
    GeForce 9300 mGPU
    GeForce 9100 mGPU
    GeForce 8800 Ultra
    GeForce 8800 GTX
    GeForce 8800 GTS
    GeForce 8800 GT
    GeForce 8800 GS
    GeForce 8600 GTS
    GeForce 8600 GT
    GeForce 8600 mGT
    GeForce 8500 GT
    GeForce 8400 GS
    GeForce 8300 mGPU
    GeForce 8200 mGPU
    GeForce 8100 mGPU

    GeForce GT 630

    Nvidia GeForce Mobile
    GeForce GTX 780M
    GeForce GTX 770M
    GeForce GTX 765M
    GeForce GTX 760M
    GeForce GT 750M
    GeForce GT 745M
    GeForce GT 740M
    GeForce GT 735M
    GeForce GT 730M
    GeForce GTX 680MX
    GeForce GTX 680M
    GeForce GTX 675MX
    GeForce GTX 675M
    GeForce GTX 670MX
    GeForce GTX 670M
    GeForce GTX 660M
    GeForce GT 650M
    GeForce GT 645M
    GeForce GT 640M
    GeForce GTX 580M
    GeForce GTX 570M
    GeForce GTX 560M
    GeForce GT 555M
    GeForce GT 550M
    GeForce GT 540M
    GeForce GT 525M
    GeForce GT 520M
    GeForce GTX 480M
    GeForce GTX 470M
    GeForce GTX 460M
    GeForce GT 445M
    GeForce GT 435M
    GeForce GT 425M
    GeForce GT 420M
    GeForce GT 415M
    GeForce GTX 285M
    GeForce GTX 280M
    GeForce GTX 260M
    GeForce GTS 360M
    GeForce GTS 350M
    GeForce GTS 260M
    GeForce GTS 250M
    GeForce GT 335M
    GeForce GT 330M
    GeForce GT 325M
    GeForce GT 320M
    GeForce 310M
    GeForce GT 240M
    GeForce GT 230M
    GeForce GT 220M
    GeForce G210M
    GeForce GTS 160M
    GeForce GTS 150M
    GeForce GT 130M
    GeForce GT 120M
    GeForce G110M
    GeForce G105M
    GeForce G103M
    GeForce G102M
    GeForce G100
    GeForce 9800M GTX
    GeForce 9800M GTS
    GeForce 9800M GT
    GeForce 9800M GS
    GeForce 9700M GTS
    GeForce 9700M GT
    GeForce 9650M GT
    GeForce 9650M GS
    GeForce 9600M GT
    GeForce 9600M GS
    GeForce 9500M GS
    GeForce 9500M G
    GeForce 9400M G
    GeForce 9300M GS
    GeForce 9300M G
    GeForce 9200M GS
    GeForce 9100M G
    GeForce 8800M GTX
    GeForce 8800M GTS
    GeForce 8700M GT
    GeForce 8600M GT
    GeForce 8600M GS
    GeForce 8400M GT
    GeForce 8400M GS
    GeForce 8400M G
    GeForce 8200M G
    Nvidia Quadro
    Quadro K6000
    Quadro K5000
    Quadro K4000
    Quadro K2000D
    Quadro K2000
    Quadro K600
    Quadro 6000
    Quadro 5000
    Quadro 4000
    Quadro 2000
    Quadro 600
    Quadro FX 5800
    Quadro FX 5600
    Quadro FX 4800
    Quadro FX 4700 X2
    Quadro FX 4600
    Quadro FX 3800
    Quadro FX 3700
    Quadro FX 1800
    Quadro FX 1700
    Quadro FX 580
    Quadro FX 570
    Quadro FX 380
    Quadro FX 370
    Quadro NVS 510
    Quadro NVS 450
    Quadro NVS 420
    Quadro NVS 295
    Quadro Plex 1000 Model IV
    Quadro Plex 1000 Model S4
    Nvidia Quadro Mobile
    Quadro K5100M
    Quadro K5000M
    Quadro K4100M
    Quadro K4000M
    Quadro K3100M
    Quadro K3000M
    Quadro K2100M
    Quadro K2000M
    Quadro K1100M
    Quadro K1000M
    Quadro K610M
    Quadro K510M
    Quadro K500M
    Quadro 5010M
    Quadro 5000M
    Quadro 4000M
    Quadro 3000M
    Quadro 2000M
    Quadro 1000M
    Quadro FX 3800M
    Quadro FX 3700M
    Quadro FX 3600M
    Quadro FX 2800M
    Quadro FX 2700M
    Quadro FX 1800M
    Quadro FX 1700M
    Quadro FX 1600M
    Quadro FX 880M
    Quadro FX 770M
    Quadro FX 570M
    Quadro FX 380M
    Quadro FX 370M
    Quadro FX 360M
    Quadro NVS 320M
    Quadro NVS 160M
    Quadro NVS 150M
    Quadro NVS 140M
    Quadro NVS 135M
    Quadro NVS 130M
    Nvidia Tesla
    Tesla K40
    Tesla K20X
    Tesla K20
    Tesla K10
    Tesla C2050/2070
    Tesla M2050/M2070
    Tesla S2050
    Tesla S1070
    Tesla M1060
    Tesla C1060
    Tesla C870
    Tesla D870
    Tesla S870

    Version features and specifications[edit]

    Feature support (unlisted features are
    supported for all compute capabilities)
    Compute capability (version)
    1.01.11.21.32.x3.03.5
    Integer atomic functions operating on
    32-bit words in global memory
    No Yes
    atomicExch() operating on 32-bit
    floating point values in global memory
    Integer atomic functions operating on
    32-bit words in shared memory
    No Yes
    atomicExch() operating on 32-bit
    floating point values in shared memory
    Integer atomic functions operating on
    64-bit words in global memory
    Warp vote functions
    Double-precision floating-point operations No Yes
    Atomic functions operating on 64-bit
    integer values in shared memory
    No Yes
    Floating-point atomic addition operating on
    32-bit words in global and shared memory
    _ballot()
    _threadfence_system()
    _syncthreads_count(),
    _syncthreads_and(),
    _syncthreads_or()
    Surface functions
    3D grid of thread block
    Warp shuffle functions No Yes
    Funnel shift No Yes
    Dynamic parallelism
    Technical specificationsCompute capability (version)
    1.01.11.21.32.x3.03.5
    Maximum dimensionality of grid of thread blocks 2 3
    Maximum x-, y-, or z-dimension of a grid of thread blocks 65535 231-1
    Maximum dimensionality of thread block 3
    Maximum x- or y-dimension of a block 512 1024
    Maximum z-dimension of a block 64
    Maximum number of threads per block 512 1024
    Warp size 32
    Maximum number of resident blocks per multiprocessor 8 16
    Maximum number of resident warps per multiprocessor 24 32 48 64
    Maximum number of resident threads per multiprocessor 768 1024 1536 2048
    Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 64 K
    Maximum number of 32-bit registers per thread 128 63 255
    Maximum amount of shared memory per multiprocessor 16 KB 48 KB
    Number of shared memory banks 16 32
    Amount of local memory per thread 16 KB 512 KB
    Constant memory size 64 KB
    Cache working set per multiprocessor for constant memory 8 KB
    Cache working set per multiprocessor for texture memory Device dependent, between 6 KB and 8 KB 12 KB Between 12 KB
    and 48 KB
    Maximum width for 1D texture
    reference bound to a CUDA array
    8192 65536
    Maximum width for 1D texture
    reference bound to linear memory
    227
    Maximum width and number of layers
    for a 1D layered texture reference
    8192 × 512 16384 × 2048
    Maximum width and height for 2D
    texture reference bound to a CUDA array
    65536 × 32768 65536 × 65535
    Maximum width and height for 2D
    texture reference bound to a linear memory
    65000 × 65000 65000 × 65000
    Maximum width and height for 2D
    texture reference bound to a CUDA array
    supporting texture gather
    N/A 16384 × 16384
    Maximum width, height, and number
    of layers for a 2D layered texture reference
    8192 × 8192 × 512 16384 × 16384 × 2048
    Maximum width, height and depth
    for a 3D texture reference bound to linear
    memory or a CUDA array
    2048 × 2048 × 2048 4096 × 4096 × 4096
    Maximum width (and height) for a cubemap
    texture reference
    N/A 16384
    Maximum width (and height) and number
    of layers for a cubemap layered texture reference
    N/A 16384 × 2046
    Maximum number of textures that
    can be bound to a kernel
    128 256
    Maximum width for a 1D surface
    reference bound to a CUDA array
    Not
    supported
    65536
    Maximum width and number of layers
    for a 1D layered surface reference
    65536 × 2048
    Maximum width and height for a 2D
    surface reference bound to a CUDA array
    65536 × 32768
    Maximum width, height, and number
    of layers for a 2D layered surface reference
    65536 × 32768 × 2048
    Maximum width, height, and depth
    for a 3D surface reference bound to a CUDA array
    65536 × 32768 × 2048
    Maximum width (and height) for a cubemap
    surface reference bound to a CUDA array
    32768
    Maximum width (and height) and number
    of layers for a cubemap layered surface reference
    32768 × 2046
    Maximum number of surfaces that
    can be bound to a kernel
    8 16
    Maximum number of instructions per
    kernel
    2 million 512 million
    Architecture specificationsCompute capability (version)
    1.01.11.21.32.02.13.03.5
    Number of cores for integer and floating-point arithmetic functions operations 8[17] 32 48 192 192
    Number of special function units for single-precision floating-point transcendental functions 2 4 8 32 32
    Number of texture filtering units for every texture address unit or render output unit (ROP) 2 4 8 32 32
    Number of warp schedulers 1 2 2 4 4
    Number of instructions issued at once by scheduler 1 1 2[18] 2 2

    For more information please visit this site: http://www.geeks3d.com/20100606/gpu-computing-nvidia-cuda-compute-capability-comparative-table/ and also read Nvidia CUDA programming guide.[19]

    Example[edit]

    This example code in C++ loads a texture from an image into an array on the GPU:

    texture<float, 2, cudaReadModeElementType> tex;
     
    void foo()
    {
      cudaArray* cu_array;
     
      // Allocate array
      cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
      cudaMallocArray(&cu_array, &description, width, height);
     
      // Copy image data to array
      cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice);
     
      // Set texture parameters (default)
      tex.addressMode[0] = cudaAddressModeClamp;
      tex.addressMode[1] = cudaAddressModeClamp;
      tex.filterMode = cudaFilterModePoint;
      tex.normalized = false; // do not normalize coordinates
     
      // Bind the array to the texture
      cudaBindTextureToArray(tex, cu_array);
     
      // Run kernel
      dim3 blockDim(16, 16, 1);
      dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1);
      kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width);
     
      // Unbind the array from the texture
      cudaUnbindTexture(tex);
    } //end foo()
     
    __global__ void kernel(float* odata, int height, int width)
    {
       unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
       unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
       if (x < width && y < height) {
          float c = tex2D(tex, x, y);
          odata[y*width+x] = c;
       }
    }
    

    Below is an example given in Python that computes the product of two arrays on the GPU. The unofficial Python language bindings can be obtained from PyCUDA.[20]

    import pycuda.compiler as comp
    import pycuda.driver as drv
    import numpy
    import pycuda.autoinit
     
    mod = comp.SourceModule("""
    __global__ void multiply_them(float *dest, float *a, float *b)
    {
      const int i = threadIdx.x;
      dest[i] = a[i] * b[i];
    }
    """)
     
    multiply_them = mod.get_function("multiply_them")
     
    a = numpy.random.randn(400).astype(numpy.float32)
    b = numpy.random.randn(400).astype(numpy.float32)
     
    dest = numpy.zeros_like(a)
    multiply_them(
            drv.Out(dest), drv.In(a), drv.In(b),
            block=(400,1,1))
     
    print dest-a*b
    

    Additional Python bindings to simplify matrix multiplication operations can be found in the program pycublas.[21]

    import numpy
    from pycublas import CUBLASMatrix
    A = CUBLASMatrix( numpy.mat([[1,2,3]],[[4,5,6]],numpy.float32) )
    B = CUBLASMatrix( numpy.mat([[2,3]],[4,5],[[6,7]],numpy.float32) )
    C = A*B
    print C.np_mat()
    

    Language bindings[edit]

    Current CUDA architectures[edit]

    The current generation CUDA architecture (codename: Fermi) which is standard on Nvidia's released (GeForce 400 Series [GF100] (GPU) 2010-03-27)[23] GPU is designed from the ground up to natively support more programming languages such as C++. It has significantly increased the peak double-precision floating-point performance compared to Nvidia's prior-generation Tesla GPU. It also introduced several new features[24] including:

    • up to 1024 CUDA cores and 6.0 billion transistors on the GTX 590
    • Nvidia Parallel DataCache technology
    • Nvidia GigaThread engine
    • ECC memory support
    • Native support for Visual Studio

    Current and future usages of CUDA architecture[edit]

    See also[edit]

    External links[edit]

  • 相关阅读:
    Oracle ref cursor和sys_refcursor
    一些命令可以帮您了解Linux 操作系统用户信息
    Linux 6上使用UDEV绑定共享存储
    Oracle VirtualBox 问题汇总
    Linux 常用操作
    CentOS 7 运行级别切换
    Oracle 更新Opatch、打补丁
    django rest framework restful 规范
    CBV FBV rest framework
    CRM
  • 原文地址:https://www.cnblogs.com/baiyw/p/3442398.html
Copyright © 2011-2022 走看看