zoukankan      html  css  js  c++  java
  • TensorFlow实战第四课(tensorboard数据可视化)

    tensorboard可视化工具

    tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架。

    通过之前展示的代码,我们进行修改从而展示其神经网络结构。

    一、搭建图纸

    首先对input进行修改,将xs,ys进行新的名称指定x_in y_in

    这里指定的名称,之后会在可视化图层中inputs中显示出来

    xs= tf.placeholder(tf.float32, [None, 1],name='x_in')
    ys= tf.placeholder(tf.loat32, [None, 1],name='y_in')

    使用with.tf.name_scope('inputs')可以将xs  ys包含进来,形成一个大的图层,图层的名字就是

    with.tf.name_scope()方法中的参数

    with tf.name_scope('inputs'):
        # define placeholder for inputs to network
        xs = tf.placeholder(tf.float32, [None, 1])
        ys = tf.placeholder(tf.float32, [None, 1])

    接下来编辑layer

    编辑前的代码片段:

    def add_layer(inputs, in_size, out_size, activation_function=None):
        # add one more layer and return the output of this layer
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        return outputs

    编辑后

    def add_layer(inputs, in_size, out_size, activation_function=None):
        # add one more layer and return the output of this layer
        with tf.name_scope('layer'):
            Weights= tf.Variable(tf.random_normal([in_size, out_size]))
            # and so on...

    定义完大的框架layer后,通知需要定义里面小的部件weights biases activationfunction

    定义方法有两种,一是用tf.name_scope(),二是在Weights中指定名称W

        def add_layer(inputs, in_size, out_size, activation_function=None):
        #define layer name
        with tf.name_scope('layer'):
            #define weights name 
            with tf.name_scope('weights'):
                Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
            #and so on......

    接着定义biases,方法同上

    def add_layer(inputs, in_size, out_size, activation_function=None):
        #define layer name
        with tf.name_scope('layer'):
            #define weights name 
            with tf.name_scope('weights')
                Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
            # define biase
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            # and so on....

    最后编辑loss 将with.tf.name_scope( )添加在loss上方 并起名为loss

    这句话就是绘制了loss

     最后再对train_step进行编辑  

    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    我们还需要运用tf.summary.FileWriter( )将上面绘画的图保存到一个目录中,方便用浏览器浏览。

    这个方法中的第二个参数需要使用sess.graph。因此我们把这句话放在获取session后面。

    这里的graph是将前面定义的框架信息收集起来,然后放在logs/目录下面。

    sess = tf.Session() # get session
    # tf.train.SummaryWriter soon be deprecated, use following
    writer = tf.summary.FileWriter("logs/", sess.graph)

    最后在终端中使用命令获取网址即可查看

    tensorboard --logdir logs

    完整代码:

    #如何可视化神经网络
    
    #tensorboard
    
    import tensorflow as tf
    
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        # add one more layer and return the output of this layer
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b)
            return outputs
    
    
    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    init = tf.global_variables_initializer()
    
    sess.run(init)

     -------------------------------------------------------------------

    tensorflow可视化训练过程的图标是如何制作的?

     首先要添加一些模拟数据。nump可以帮助我们添加一些模拟数据。

    利用np.linespace()产生随机的数字 同时为了模拟更加真实 我们会添加一些噪声 这些噪声是通过np.random.normal()随机产生的。

     x_data= np.linspace(-1, 1, 300, dtype=np.float32)[:,np.newaxis]
     noise=  np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
     y_data= np.square(x_data) -0.5+ noise

    在layer中为weights biases设置变化图表

    首先我们在add_layer()方法中添加一个参数n_layer 来标识层数 并且用变量layer_name代表其每层的名称

    def add_layer(
        inputs , 
        in_size, 
        out_size,
        n_layer, 
        activation_function=None):
        ## add one more layer and return the output of this layer
        layer_name='layer%s'%n_layer  ## 定义一个新的变量
        ## and so on ……

    接下来 我们层中的Weights设置变化图 tensorflow中提供了tf.histogram_summary( )方法,用来绘制图片,第一个参数是图表的名称,第二个参数是图标要记录的变量。

    def add_layer(inputs , 
                in_size, 
                out_size,n_layer, 
                activation_function=None):
        ## add one more layer and return the output of this layer
        layer_name='layer%s'%n_layer
        with tf.name_scope('layer'):
             with tf.name_scope('weights'):
                  Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
                  tf.summary.histogram(layer_name + '/weights', Weights) 
        ##and so no ……

    同样的方法我们对biases进行绘制图标:

    with tf.name_scope('biases'):
        biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b')
        tf.summary.histogram(layer_name + '/biases', biases)  

    至于activation_function( ) 可以不用绘制,我们对output 使用同样的方法

    最后通过修改 addlayer()方法如下所示

    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        # add one more layer and return the output of this layer
    
        #对神经层进行命名
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
                tf.summary.histogram(layer_name + '/weights', Weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
                tf.summary.histogram(layer_name + '/biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            tf.summary.histogram(layer_name + '/outputs', outputs)
        return outputs

    设置loss的变化图

     loss是tensorb的event下面的 这是由于我们使用的是tf.scalar_summary()方法。

     当你的loss函数图像呈现的是下降的趋势 说明学习是有效的

    将所有训练图合并

    接下来进行合并打包,tf.merge_all_summaries()方法会对我们所有的summaries合并到一起

    sess = tf.Session()
    #合并
    merged = tf.summary.merge_all()
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    init = tf.global_variables_initializer()

    训练数据

    忽略不想写

    完整代码如下:(运行代码后需要在终端中执行tensorboard --logdir logs)

    import tensorflow as tf
    import numpy as np
    
    
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        # add one more layer and return the output of this layer
    
        #对神经层进行命名
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
                tf.summary.histogram(layer_name + '/weights', Weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
                tf.summary.histogram(layer_name + '/biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            tf.summary.histogram(layer_name + '/outputs', outputs)
        return outputs
    
    
    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
        tf.summary.scalar('loss', loss)
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    #合并
    merged = tf.summary.merge_all()
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
            #i 就是记录的步数
            writer.add_summary(result, i)

    tensorboard查看效果  使用命令tensorboard --logdir logs

  • 相关阅读:
    Servlet页面跳转实现方法的区别
    谈JSP与XML的交互
    xml可以用做什么?
    Struts1.2入门知识
    做java web 开发的简单项目必须具备的知识
    Web工程师必备的18款工具
    css的四种调用方式
    jQuery Utilities
    历年考研数学常考题型考试必备
    。net思维导图
  • 原文地址:https://www.cnblogs.com/baobaotql/p/11276625.html
Copyright © 2011-2022 走看看