zoukankan      html  css  js  c++  java
  • HDU 3068 最长回文 Manacher算法

    Manacher算法是个解决Palindrome问题的O(n)算法,能够说是个超级算法了,秒杀其它一切Palindrome解决方式,包含复杂的后缀数组。


    网上非常多解释,最好的解析文章当然是Leetcode的了:http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html


    这里总结一下思想重点:


    1 原字符串的字符间插入新的字符, 如#,方便统一全部的字符中心,比方aa和aba的字符中心不一样的,aa的字符中心能够说是aa,而aba的中心则是b,而插入#之后,aa成#a#a#,当中心是一个字符#,而aba插入#a#b#a#,中心还是一个字符b。


    2 充分利用前面已经计算出的信息来计算后面的信息,这里主要利用palindrome的对称性的特性,那么就能够利用对称中心前半段的信息计算后半段的信息了。这个是优化算法到O(n)的关键。 由于对称中心是不断右移的,故此在对称中心内的求解仅仅需直接copy前半段的信息就能够,而超出当前对称范围的就须要expand Palindrome了。


    3 防止溢出,前面加一个额外的特殊字符,如'~',和前面的插入字符不一样。后面也须要插入字符,可是为什么非常多程序不插入字符呢?那是由于C++的char都是以''结束的,故此,不插入也是能够的,以下程序明显插入''到结尾了。


    4 须要维护最右点信息,中心信息和P数组,P数组的含义是以i点为中心的最长palindrome子字符串的长度,这里是长度+1,方便计算。


    关键代码就几行,可是思想却是十分难的。


    #include <stdio.h>
    #include <string.h>
    
    const int MAX_2L = 220010;
    char txt[MAX_2L];
    int P[MAX_2L];
    int len;
    inline int min(int a, int b) { return a < b? a : b; }
    inline int max(int a, int b) { return a > b? a : b; }
    
    void preProcess()
    {
    	len = strlen(txt);
    	int i = len-1, j = (len<<1);
    	txt[j+2] = '';
    	txt[j+1] = '#';
    	for ( ; i >= 0; i--)
    	{
    		txt[j--] = txt[i];
    		txt[j--] = '#';
    	}
    	txt[0] = '~';
    }
    
    int main()
    {
    	while (gets(txt))
    	{
    		preProcess();
    		len = len << 1 | 1;
    		int maxLen = 0, right = 0, center = 0;
    		for (int i = 1; i <= len; i++)
    		{
    			P[i] = i<right ? min(P[(center<<1)-i], right-i) : 1;
    			while (txt[i-P[i]] == txt[i+P[i]]) P[i]++;
    
    			maxLen = max(maxLen, P[i]);
    
    			if (right < i+P[i]) center = i, right = i+P[i];
    		}
    		printf("%d
    ", maxLen-1);
    
    		gets(txt); //get rid of empty line
    	}
    	return 0;
    }



  • 相关阅读:
    es6 扩展运算符 ...
    回顾2018,展望2019
    vue 兼容IE报错解决方案
    错误的理解引起的bug async await 执行顺序
    js async await 终极异步解决方案
    javascript 之继承-15
    javascript 之原型、原型链-14
    vue入门学习篇——初识vue
    模拟实现select组件功能
    ie8绝对定位存在的坑
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4274953.html
Copyright © 2011-2022 走看看