Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
n个点中每个点都可以作为root,当 i 作为root时,小于 i 的点都只能放在其左子树中,大于 i 的点只能放在右子树中,此时只需求出左、右子树各有多少种,二者相乘即为以 i 作为root时BST的总数。
1 public class Solution { 2 public int numTrees(int n) { 3 int[] a=new int[n+1]; 4 a[0]=1; 5 for (int i = 1; i <= n; i++) { 6 if (i<3) { 7 a[i]=i; 8 }else { 9 for (int j = 1; j <=i; j++) { 10 a[i]=a[i]+a[j-1]*a[i-j]; 11 } 12 } 13 } 14 return a[n]; 15 } 16 }