zoukankan      html  css  js  c++  java
  • canny算法的实现(android加载图片,数组写入文件换行)

    Canny边缘检测首先要对图像进行高斯去噪,前面讲到了高斯去噪处理,这里从对图像灰度进行微分运算讲起吧。微分运算常用的方法是利用模板算子,把模板中心对应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素进行数学运算,算出图像对应像素点的值实验中模板矩阵选取了Laplacian算子[44]、Soble算子、Roberts算子。拉普拉兹算子是2阶微分算子,它的精度还算比较高,但对噪声过于敏感,有噪声的情况下效果很差。罗伯特算子在光照不均匀时候效果也很差,针对噪声影响也较为敏感。下面以较为简单的模板作为样例做出讲解:

    1、计算x和y方向的梯度值从而得到灰度的梯度幅值和梯度方向

     Gx=(hd[x][y+1]-hd[x][y]+hd[x+1][y+1]-hd[x+1][y])/2;
     Gy=(hd[x][y]-hd[x+1][y]+hd[x][y+1]-hd[x+1][y+1])/2;

    G[x][y]=(int)Math.sqrt(Gy*Gy+Gx*Gx);
    angle[x][y]=Math.atan2(Gy,Gx);

    2、高低阈值的选取。通常canny算子的高阈值Th和低阈值Tl的0.4,Tl=0.4*Th,而高阈值根据二值化的目的选择不同的值,先验知识通常Th选择方式:梯度幅值矩阵统计在梯度值,将所有梯度累加求和,取在q%(q%在0.75-0.85之间)的那个振幅值作为高阈值。

    3、非极大值抑制,这是边缘检测的关键,是将区域内的梯度振幅值的极值当作边缘点,如下图:

    对整个梯度振幅图扫描,如图若(x,y)的点大于dTmp1点和dTmp2的振幅则将(x,y)视为预选边缘点,将起值置为255。由图可以看出dTmp1点振幅值可以G(g1) + (1-cot(sigma)) *(G(g2)-G(g1))同理可以得到dTmp2点的梯度振幅值。G这样得到一个预选边缘点矩阵:

      int [][] mayEdgeMatrix = getMaxmaiLimitMatrix(Gxy,angle);

    4、扫描mayEdgeMatrix里所有预选边缘点,将梯度振幅大于等于Th的则视为边缘点置为255;将低于Tl的直接置为0,视为非边缘点;介于Tl、Th之间的的置为125,视为待检测点。这样得到了一个初步的边缘图点。

    5、边缘连接,对上一部得到的图像进行扫描,将255周围的8领域点进行检测,若有为125的视为边缘点,置为255,再以这些新置为255的点8领域查找待检测点,若有就将其置为255,直到没有新的边缘点产生为止。

    下面给出实现的类,在下面会给出调用的方法和相应的activity

    package com.example.lammy.imagetest;
    
    import android.graphics.Bitmap;
    import java.util.LinkedList;
    /**
     * Created by Lammy on 2016/11/12.
     */
    public class MyCanny {
        private int Th;
        private int Tl;
        private float ratioOfTh;
        private Bitmap bitmap;
        private int h, w;
        private int[][] Gxy;
        private double[][] angle;
    
        private static int mayEdgePointGrayValue = 125;
        public MyCanny(Bitmap bitmap, float ratioOfTh) {
            this.bitmap = bitmap;
            this.ratioOfTh = ratioOfTh;
            init();
        }
    
        private void init() {
            h = bitmap.getHeight();
            w = bitmap.getWidth();
            Gxy = new int[h][w];
            angle = new double[h][w];
        }
    
        //得到高斯模板矩阵
        public float[][] get2DKernalData(int n, float sigma) {
            int size = 2 * n + 1;
            float sigma22 = 2 * sigma * sigma;
            float sigma22PI = (float) Math.PI * sigma22;
            float[][] kernalData = new float[size][size];
            int row = 0;
            for (int i = -n; i <= n; i++) {
                int column = 0;
                for (int j = -n; j <= n; j++) {
                    float xDistance = i * i;
                    float yDistance = j * j;
                    kernalData[row][column] = (float) Math
                            .exp(-(xDistance + yDistance) / sigma22) / sigma22PI;
                    column++;
                }
                row++;
            }
    
            return kernalData;
        }
        //获得图的灰度矩阵
        public int[][] getGrayMatrix(Bitmap bitmap) {
            int h = bitmap.getHeight();
            int w = bitmap.getWidth();
            int grayMatrix[][] = new int[h][w];
            for (int i = 0; i < h; i++)
                for (int j = 0; j < w; j++) {
                    int argb = bitmap.getPixel(j, i);
                    int r = (argb >> 16) & 0xFF;
                    int g = (argb >> 8) & 0xFF;
                    int b = (argb >> 0) & 0xFF;
                    int grayPixel = (int) (r + g + b) / 3;
                    grayMatrix[i][j] = grayPixel;
                }
            return grayMatrix;
        }
    
        //获得高斯模糊后的灰度矩阵
        public int[][] GS(int[][] hd, int size, float sigma) {
            float[][] gs = get2DKernalData(size, sigma);
            int outmax = 0;
            int inmax = 0;
            for (int x = size; x < w - size; x++)
                for (int y = size; y < h - size; y++) {
                    float hc1 = 0;
                    if (hd[y][x] > inmax)
                        inmax = hd[y][x];
                    for (int k = -size; k < size + 1; k++)
                        for (int j = -size; j < size + 1; j++) {
                            hc1 = gs[size + k][j + size] * hd[y + j][x + k] + hc1;
    
                        }
                    hd[y][x] = (int) (hc1);
                    if (outmax < hc1)
                        outmax = (int) (hc1);
                }
            float rate = inmax / outmax;
    
            for (int x = size; x < w - size; x++)
                for (int y = size; y < h - size; y++) {
                    hd[y][x] = (int) (hd[y][x] * rate);
                }
            return hd;
        }
        //获得Gxy 和angle即梯度振幅和梯度方向
        public void getGxyAndAngle(int[][] Gs) {
    
            for (int x = 1; x < h - 1; x++)
                for (int y = 1; y < w - 1; y++) {
                    int Gx = (Gs[x][y + 1] - Gs[x][y] + Gs[x + 1][y + 1] - Gs[x + 1][y]) / 2;//hd[x][y+1]-hd[x][y];//
                    int Gy = (Gs[x][y] - Gs[x + 1][y] + Gs[x][y + 1] - Gs[x + 1][y + 1]) / 2;//hd[x+1][y]-hd[x][y];//
    
                    //另外一种算子
    //                int Gx = (Gs[x - 1][y + 1] + 2 * Gs[x][y + 1]
    //                        + Gs[x + 1][y + 1] - Gs[x - 1][y - 1] - 2
    //                        * Gs[x][y - 1] - Gs[x + 1][y - 1]) / 4;
    //                int Gy=(Gs[x-1][y-1]+2*Gs[x-1][y]+Gs[x-1][y+1]-Gs[x+1][y-1]-2*Gs[x+1][y]-Gs[x+1][y+1])/4;
    
                    //G[x][y]=Math.sqrt(Math.pow(Gx, 2)+Math.pow(Gy, 2));
                    Gxy[x][y] = (int) Math.sqrt(Gy * Gy + Gx * Gx);
                    angle[x][y] = Math.atan2(Gy, Gx);
                    //将梯度方向值转向(0,2*PI)
                    if (angle[x][y] < 0) {
                        angle[x][y] = angle[x][y] + 2 * Math.PI;
                    }
                }
        }
    
        //非极大值抑制,将极值点存到edge边缘矩阵中,极值点是可能为边缘的点
        public int[][] getMaxmaiLimitMatrix(int[][]Gxy,double[][]angle) {
            int[][] edge =new int[h][w];
            for (int x = 0; x < h - 1; x++)
                for (int y = 0; y < w - 1; y++) {
                    double angle1 = angle[x][y] / (Math.PI);
                    if ((angle1 > 0 && angle1 <= 0.25) | (angle1 > 1 && angle1 <= 1.25)) {
    
                        double dTmp1 = Gxy[x][y + 1] + Math.abs(Math.tan(angle[x][y]) * (Gxy[x - 1][y + 1] - Gxy[x][y + 1]));
                        double dTmp2 = Gxy[x][y - 1] + Math.abs(Math.tan(angle[x][y]) * (Gxy[x + 1][y - 1] - Gxy[x][y - 1]));
    
                        double dTmp = Gxy[x][y];
                        if (dTmp > dTmp1 && dTmp > dTmp2)
                            edge[x][y] = 255;
                    }
    
                    if ((angle1 <= 2 && angle1 > 1.75) | (angle1 <= 1 && angle1 > 0.75)) {
    
                        double dTmp1 = Gxy[x][y + 1] + Math.abs(Math.tan(angle[x][y])) * (Gxy[x + 1][y + 1] - Gxy[x][y + 1]);
                        double dTmp2 = Gxy[x][y - 1] + Math.abs(Math.tan(angle[x][y])) * (Gxy[x - 1][y - 1] - Gxy[x][y - 1]);
    
                        double dTmp = Gxy[x][y];
                        if (dTmp > dTmp1 && dTmp > dTmp2)
                            edge[x][y] = 255;
                    }
    
                    if ((angle1 > 1 / 4 && angle1 <= 0.5) | (angle1 > 5 / 4 && angle1 <= 1.5)) {
    
                        double dTmp1 = Gxy[x - 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x - 1][y + 1] - Gxy[x - 1][y]);
                        double dTmp2 = Gxy[x + 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x + 1][y - 1] - Gxy[x + 1][y]);
    
                        double dTmp = Gxy[x][y];
                        if (dTmp > dTmp1 && dTmp > dTmp2)
                            edge[x][y] = 255;
                    }
    
                    if ((angle1 > 1.5 && angle1 <= 1.75) | (angle1 > 0.5 && angle1 <= 0.75)) {
    
                        double dTmp1 = Gxy[x - 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x - 1][y - 1] - Gxy[x - 1][y]);
                        double dTmp2 = Gxy[x + 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x + 1][y + 1] - Gxy[x + 1][y]);
    
                        double dTmp = Gxy[x][y];
                        if (dTmp > dTmp1 && dTmp > dTmp2)
                            edge[x][y] = 255;
    
                    }
                }
            return  edge;
        }
    
        public void ThTlLimitPoints(int [][] maxmaiLimitMatrix,int Th , int Tl)
        {
            //上面得到的为255的才可能是边缘点,下面根据高低阈值再次去掉小于Tl点,高于Th的仍然为255,定为边缘点,125的为预选点
            for(int x=1;x<h-1;x++)
                for(int y=1;y<w-1;y++)
                {
                    if(maxmaiLimitMatrix[x][y]==255)
                    {
                        if(Gxy[x][y]<Tl)
                            maxmaiLimitMatrix[x][y]=0;
    
                        if(Gxy[x][y]>Tl&&Gxy[x][y]<Th)
                            maxmaiLimitMatrix[x][y]=mayEdgePointGrayValue;
                    }
    
                }
        }
        //获得高阈值
        private int getTh(int [][] Gxy)
        {
            //梯度振幅统计,因为通过计算振幅的最大值不超过500,因此用500的矩阵统计
            int []amplitudeStatistics=new int[500];
            for(int x=1;x<h-1;x++)
                for(int y=1;y<w-1;y++){
                    amplitudeStatistics[Gxy[x][y]]++;
                }
            int pointNumber=0;
            int max=0;
            for(int i=1;i<500;i++){
                if(amplitudeStatistics[i]>0)
                {
                    max=i;
                }
                pointNumber=pointNumber+amplitudeStatistics[i];
            }
    
            int ThNumber=(int)(ratioOfTh*pointNumber);
            int     ThCount=0; int Th=0;
            for(int i=1;i<=max;i++)
            {
                if(ThCount<ThNumber)
                    ThCount=ThCount+amplitudeStatistics[i];
                else
                {
                    Th=i-1;
                    break;
                }
            }
            return Th;
        }
    
        private int getTl(int Th)
        {
            return (int)(Th*0.4);
        }
    
        //canny算法的边缘连接
        public void traceEdge(double maybeEdgePointGrayValue, int edge[][]){
            int [][]liantongbiaoji = new int [h][w];
            for(int i = 0 ; i < h ; i++)
                for(int j = 0 ; j < w; j++) {
                    if(edge[i][j]==255&&liantongbiaoji[i][j]==0) {
                        if ((edge[i][j] >= maybeEdgePointGrayValue) && liantongbiaoji[i][j] == 0) {
                            liantongbiaoji[i][j] = 1;
                            LinkedList<Point> qu = new LinkedList<Point>();
                            qu.add(new Point(i, j));
                            while (!qu.isEmpty()) {
                                Point cur = qu.removeFirst();
    
                                for (int a = -1; a <= 1; a++)
                                    for (int b = -1; b <= 1; b++) {
                                        if (cur.x + a >= 0 && cur.x + a < h && cur.y + b >= 0
                                                && cur.y + b < w) {
                                            if (edge[cur.x + a][cur.y + b] >= maybeEdgePointGrayValue
                                                    && liantongbiaoji[cur.x + a][cur.y + b] == 0) {
                                                qu.add(new Point(cur.x + a, cur.y + b));
                                                liantongbiaoji[cur.x + a][cur.y + b] = 1;
                                                edge[cur.x + a][cur.y + b] = 255;
                                            }
                                        }
                                    }
    
                            }
                        }
                    }
                }
        }
    
        //由灰度矩阵创建灰度图
        public Bitmap createGrayImage(int[][]grayMatrix)
        {
            int h=grayMatrix.length;
            int w = grayMatrix[0].length;
            Bitmap bt=Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
            for(int i=0;i<h;i++)
                for(int j=0;j<w;j++)
                {
                    int grayValue=grayMatrix[i][j];
                    int color = ((0xFF << 24)+(grayValue << 16)+(grayValue << 8)+grayValue);
                    bt.setPixel(j, i, color);
                }
            return bt;
        }
    
        public Bitmap getEdgeBitmap()
        {
            int grayMatrix[][] = getGrayMatrix(bitmap);
    
            int GS[][] = GS(grayMatrix , 1 , 0.6f);
            getGxyAndAngle(GS);
            Th = getTh(Gxy);
            int [][] mayEdgeMatrix = getMaxmaiLimitMatrix(Gxy,angle);
            Tl = getTl(Th);
            ThTlLimitPoints(mayEdgeMatrix , Th , Tl);
            traceEdge(mayEdgePointGrayValue , mayEdgeMatrix);
            for(int x=1;x<h-1;x++)
                for(int y=1;y<w-1;y++) {
                    if(mayEdgeMatrix[x][y]!=255)
                        mayEdgeMatrix[x][y]=0;
                }
            return  createGrayImage(mayEdgeMatrix);
    
        }
    
        class Point {
            Point(int a, int b) {
                this.x = a;
                this.y = b;
            }
    
            int x;
            int y;
        }
    
    }
    View Code

      实现了上述算法移植到手机,发现在java平台上实现后运行效果非常好,而运行在手机端上效果很差。同样的算法为何结果相差如此之大呢?

    经过一步步的排查,将每一步得到的数组打印到文件与java打印的数组比较,最终发现了原因,罪魁祸首就是安卓加载jpg、png甚至是bitmap到内存时图片的宽高都会变大,且比率不一定相同,这样导致我加载同一张图片时,android自动对图片进行了放大,导致手机的边缘更加模糊且无故增加了一些细节。为了解决这个问问题,我先获取未加载时候图片的宽高,在加载图片后再压缩回加载前图片的大小。 在acitiviy里有讲解,下面直接贴出代码:

    package com.example.lammy.imagetest;
    
    import android.content.ContentResolver;
    import android.content.Context;
    import android.content.Intent;
    import android.graphics.Bitmap;
    import android.graphics.BitmapFactory;
    import android.graphics.Matrix;
    import android.media.ThumbnailUtils;
    import android.net.Uri;
    import android.os.Environment;
    import android.provider.MediaStore;
    import android.support.v7.app.AppCompatActivity;
    import android.os.Bundle;
    import android.util.DisplayMetrics;
    import android.view.View;
    import android.widget.ImageView;
    import android.widget.Toast;
    
    import java.io.BufferedOutputStream;
    import java.io.BufferedWriter;
    import java.io.DataInputStream;
    import java.io.DataOutputStream;
    import java.io.File;
    import java.io.FileNotFoundException;
    import java.io.FileOutputStream;
    import java.io.FileWriter;
    import java.io.InputStream;
    import java.io.Writer;
    
    public class MainActivity extends AppCompatActivity {
    
        ImageView imageView;
        Bitmap bt;
    
        @Override
        protected void onCreate(Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            setContentView(R.layout.activity_main);
            imageView = (ImageView) findViewById(R.id.image);
    
            int scr =R.drawable.xl;
            //获取源图像的宽和高(因为android在加载图片到手机里的时候会使得图片宽高变大,且比率不一定一样,为了让其不变形必须记下加载前的图片宽高)再压缩回去
            BitmapFactory.Options options=new BitmapFactory.Options();
            options.inJustDecodeBounds=true;//(设为true 图片不加入内存效率高)
            BitmapFactory.decodeResource(getResources(),scr , options);
            int outWidth = options.outWidth;
            int outHeight = options.outHeight;
            System.out.println("jpg图原图"+outHeight+","+outWidth);
            options.inJustDecodeBounds=false;
            bt = BitmapFactory.decodeResource(getResources(),scr );
            System.out.println("加载后图:"+bt.getHeight()+","+bt.getWidth());
            //将图片压缩到加载前的宽高,当然图片太大也可以宽高同比率压缩。
            bt =  ThumbnailUtils.extractThumbnail(bt,outWidth,outHeight);
            imageView.setImageBitmap(bt);
    
           // jpg图原图271,482
           // 加载后图:711,1265
        }
    
        public void click(View view) {
            MyCanny myCanny =new MyCanny(bt,0.85f);
            int Gs [][] =myCanny.GS(myCanny.getGrayMatrix(bt) , 1 , 0.6f);
            try {
                outPutArray(Gs ,"grayMatrix.txt");
            } catch (Exception e) {
                e.printStackTrace();
            }
            Bitmap edge = myCanny.getEdgeBitmap();
            edge =  ThumbnailUtils.extractThumbnail(edge,1000,600);
            imageView.setImageBitmap(edge);
        }
    
      //  将数组写入到data目录
        public  void outPutArray(int[] [] a ,String filename) throws Exception {
            try {
                File file = new File("data/data/com.example.lammy.imagetest/files/"+filename);
                FileWriter fileWriter = new FileWriter(file);
                BufferedWriter bw=new BufferedWriter(fileWriter);
                int size = 15;
                for(int i = 0 ; i < size ; i ++) {
                    for (int j = 0; j < size; j++) {
                        String s = a[i][j] + "   ";
                        bw.write(s);
                        bw.flush();
                    }
                    bw.newLine();
                    bw.flush();
                }
                bw.flush();
                bw.close();
            }catch (Exception e){
                System.out.println("mmmmmmmmmmmmmmmmmmmmm");
            }
        }
    }
    View Code

    打印了一下加载图前后的大小:

      jpg图原图271,482
     加载后图:711,1265

     发现加载到内存后放大了2.6倍左右(原因:decodeResource这个方法会根据drawable所在的资源目录适配不同的dpi,因此放大了),且为了适应手机屏幕的分辨率,宽高放大的比率不相等(相近),这导致了我们算法的效果变差的主要原因,因此我将图像压缩回加载前的大小,再使用canny算法边缘检测,效果就和java的差不多了。下面是效果:

            

          原图的灰度图                                              边缘图

  • 相关阅读:
    20200722T1 【NOIP2015模拟10.29A组】三色树
    【NOIP2015模拟10.29B组】抓知了
    20200721T2 【NOIP2015模拟10.22】最大子矩阵
    20200721T1 【NOIP2015模拟10.22】矩形
    20200720T4 五子棋
    [JZOJ3809] 设备塔
    注册了!
    Python之元组和集合
    Python中列表详解
    python 字符串
  • 原文地址:https://www.cnblogs.com/bokeofzp/p/6057952.html
Copyright © 2011-2022 走看看