zoukankan      html  css  js  c++  java
  • PAT 1007

    1007. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:
    10 -10 1 2 3 4 -5 -23 3 7 -21 
    Sample Output:
    10 1 4 

    动态规划的经典问题,最大连续子序列和。

    代码

     1 #include <stdio.h>
     2 
     3 int main()
     4 {
     5     int K;
     6     int data[10000];
     7     int i;
     8     int flag;
     9     while(scanf("%d",&K) != EOF){
    10         flag = 0;
    11         for (i=0;i<K;++i){
    12             scanf("%d",&data[i]);
    13             if(data[i] >= 0)
    14                 flag = 1;
    15         }
    16         if(flag == 0){
    17             printf("0 %d %d ",data[0],data[K-1]);
    18             continue;
    19         }
    20         int max_seq = data[0];
    21         int max_s = 0,max_e = 0;
    22         int sum = data[0];
    23         int sum_s = 0,sum_e = 0;
    24         for(i=1;i<K;++i){
    25             if(sum < 0){
    26                 sum = data[i];
    27                 sum_s = sum_e = i;
    28             }
    29             else{
    30                 sum += data[i];
    31                 sum_e = i;
    32             }
    33             if(sum > max_seq){
    34                 max_seq = sum;
    35                 max_s = sum_s;
    36                 max_e = sum_e;
    37             }
    38         }
    39         printf("%d %d %d ",max_seq,data[max_s],data[max_e]);
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    确定查询各阶段消耗的时间
    mysql 处理查询请求过程
    如何获取有性能问题的SQL
    索引优化策略
    CXF支持 SOAP1.1 SOAP1.2协议
    MYSQL 基于GTID的复制
    poj2056
    poj2049
    poj1033
    poj1221
  • 原文地址:https://www.cnblogs.com/boostable/p/pat_1007.html
Copyright © 2011-2022 走看看