zoukankan      html  css  js  c++  java
  • Apriori算法例子

    1 Apriori介绍

    Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2L2L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。

    其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。

    2   连接步和剪枝步

    在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。

    1)  连接步

    为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1l2Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集lili[1]<li[2]<……….<li[k-1]。将Lk-1与自身连接,如果(l1[1]=l2[1])&&( l1[2]=l2[2])&&……..&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1]),那认为l1l2是可连接。连接l1l2 产生的结果是{l1[1],l1[2],……,l1[k-1],l2[k-1]}。

    2)  剪枝步

    CKLK的超集,也就是说,CK的成员可能是也可能不是频繁的。通过扫描所有的事务(交易),确定CK中每个候选的计数,判断是否小于最小支持度计数,如果不是,则认为该候选是频繁的。为了压缩Ck,可以利用Apriori性质:任一频繁项集的所有非空子集也必须是频繁的,反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。

    Tip:为什么要压缩CK呢?因为实际情况下事务记录往往是保存在外存储上,比如数据库或者其他格式的文件上,在每次计算候选计数时都需要将候选与所有事务进行比对,众所周知,访问外存的效率往往都比较低,因此Apriori加入了所谓的剪枝步,事先对候选集进行过滤,以减少访问外存的次数。)

    3   Apriori算法实例

    交易ID

    商品ID列表

    T100

    I1,I2,I5

    T200

    I2,I4

    T300

    I2,I3

    T400

    I1,I2,I4

    T500

    I1,I3

    T600

    I2,I3

    T700

    I1,I3

    T800

    I1,I2,I3,I5

    T900

    I1,I2,I3

    上图为某商场的交易记录,共有9个事务,利用Apriori算法寻找所有的频繁项集的过程如下:

    详细介绍下候选3项集的集合C3的产生过程:从连接步,首先C3={{I1,I2,I3},{I1,I2,I5},{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}(C3是由L2与自身连接产生)。根据Apriori性质,频繁项集的所有子集也必须频繁的,可以确定有4个候选集{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}不可能时频繁的,因为它们存在子集不属于频繁集,因此将它们从C3中删除。注意,由于Apriori算法使用逐层搜索技术,给定候选k项集后,只需检查它们的(k-1)个子集是否频繁。

    3. Apriori伪代码

    算法:Apriori

    输入:D - 事务数据库;min_sup - 最小支持度计数阈值

    输出:L - D中的频繁项集

    方法:

         L1=find_frequent_1-itemsets(D); // 找出所有频繁1项集

         For(k=2;Lk-1!=null;k++){

            Ck=apriori_gen(Lk-1); // 产生候选,并剪枝

            For each 事务t in D{ // 扫描D进行候选计数

                Ct =subset(Ck,t); // 得到t的子集

                For each 候选c 属于 Ct

                             c.count++;

            }

            Lk={c属于Ck | c.count>=min_sup}

    }

    Return L=所有的频繁集;

     

    Procedure apriori_gen(Lk-1:frequent(k-1)-itemsets)

          For each项集l1属于Lk-1

                  For each项集 l2属于Lk-1

                           If((l1[1]=l2[1])&&( l1[2]=l2[2])&&……..

    && (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1])) then{

                       c=l1连接l2 //连接步:产生候选

                       if has_infrequent_subset(c,Lk-1) then

                           delete c; //剪枝步:删除非频繁候选

                       else add c to Ck;

                      }

              Return Ck;

     

         Procedure has_infrequent_sub(c:candidate k-itemset; Lk-1:frequent(k-1)-itemsets)

            For each(k-1)-subset s of c

                If s不属于Lk-1 then

                   Return true;

            Return false;

     

     

     

    4. 由频繁项集产生关联规则

    Confidence(A->B)=P(B|A)=support_count(AB)/support_count(A)

    关联规则产生步骤如下:

    1)  对于每个频繁项集l,产生其所有非空真子集;

    2)  对于每个非空真子集s,如果support_count(l)/support_count(s)>=min_conf,则输出 s->(l-s),其中,min_conf是最小置信度阈值。

    例如,在上述例子中,针对频繁集{I1,I2,I5}。可以产生哪些关联规则?该频繁集的非空真子集有{I1,I2},{I1,I5},{I2,I5},{I1 },{I2}和{I5},对应置信度如下:

    I1&&I2->I5            confidence=2/4=50%

    I1&&I5->I2            confidence=2/2=100%

    I2&&I5->I1            confidence=2/2=100%

    I1 ->I2&&I5            confidence=2/6=33%

    I2 ->I1&&I5            confidence=2/7=29%

    I5 ->I1&&I2            confidence=2/2=100%

    如果min_conf=70%,则强规则有I1&&I5->I2,I2&&I5->I1,I5 ->I1&&I2。

    5. Apriori Java代码

    package com.apriori;

     

    import java.util.ArrayList;

    import java.util.Collections;

    import java.util.HashMap;

    import java.util.List;

    import java.util.Map;

    import java.util.Set;

     

    public class Apriori {

     

             private final static int SUPPORT = 2; // 支持度阈值

             private final static double CONFIDENCE = 0.7; // 置信度阈值

     

             private final static String ITEM_SPLIT=";"; // 项之间的分隔符

             private final static String CON="->"; // 项之间的分隔符

     

             private final static List<String> transList=new ArrayList<String>(); //所有交易

     

             static{//初始化交易记录

                       transList.add("1;2;5;");

                       transList.add("2;4;");

                       transList.add("2;3;");

                       transList.add("1;2;4;");

                       transList.add("1;3;");

                       transList.add("2;3;");

                       transList.add("1;3;");

                       transList.add("1;2;3;5;");

                       transList.add("1;2;3;");

             }

     

            

             public Map<String,Integer> getFC(){

            Map<String,Integer> frequentCollectionMap=new HashMap<String,Integer>();//所有的频繁集

     

            frequentCollectionMap.putAll(getItem1FC());

     

            Map<String,Integer> itemkFcMap=new HashMap<String,Integer>();

            itemkFcMap.putAll(getItem1FC());

            while(itemkFcMap!=null&&itemkFcMap.size()!=0){

              Map<String,Integer> candidateCollection=getCandidateCollection(itemkFcMap);

              Set<String> ccKeySet=candidateCollection.keySet();

     

              //对候选集项进行累加计数

              for(String trans:transList){

                 for(String candidate:ccKeySet){

                          boolean flag=true;// 用来判断交易中是否出现该候选项,如果出现,计数加1

                          String[] candidateItems=candidate.split(ITEM_SPLIT);

                          for(String candidateItem:candidateItems){

                                   if(trans.indexOf(candidateItem+ITEM_SPLIT)==-1){

                                             flag=false;

                                             break;

                                   }

                          }

                          if(flag){

                                   Integer count=candidateCollection.get(candidate);

                                   candidateCollection.put(candidate, count+1);

                          }

                 }

              }

     

              //从候选集中找到符合支持度的频繁集项

              itemkFcMap.clear();

              for(String candidate:ccKeySet){

                 Integer count=candidateCollection.get(candidate);

                 if(count>=SUPPORT){

                     itemkFcMap.put(candidate, count);

                 }

              }

     

              //合并所有频繁集

              frequentCollectionMap.putAll(itemkFcMap);

     

            }

     

            return frequentCollectionMap;

             }

     

            

             private Map<String,Integer> getCandidateCollection(Map<String,Integer> itemkFcMap){

                       Map<String,Integer> candidateCollection=new HashMap<String,Integer>();

                       Set<String> itemkSet1=itemkFcMap.keySet();

                       Set<String> itemkSet2=itemkFcMap.keySet();

     

                       for(String itemk1:itemkSet1){

                                for(String itemk2:itemkSet2){

                                         //进行连接

                                         String[] tmp1=itemk1.split(ITEM_SPLIT);

                                         String[] tmp2=itemk2.split(ITEM_SPLIT);

     

                                         String c="";

                                         if(tmp1.length==1){

                                                   if(tmp1[0].compareTo(tmp2[0])<0){

                                                            c=tmp1[0]+ITEM_SPLIT+tmp2[0]+ITEM_SPLIT;

                                                   }

                                         }else{

                                                   boolean flag=true;

                        for(int i=0;i<tmp1.length-1;i++){

                               if(!tmp1[i].equals(tmp2[i])){

                                        flag=false;

                                        break;

                               }

                        }

                        if(flag&&(tmp1[tmp1.length-1].compareTo(tmp2[tmp2.length-1])<0)){

                               c=itemk1+tmp2[tmp2.length-1]+ITEM_SPLIT;

                        }

                                         }

     

                                         //进行剪枝

                                         boolean hasInfrequentSubSet = false;

                                         if (!c.equals("")) {

                                                   String[] tmpC = c.split(ITEM_SPLIT);

                                                   for (int i = 0; i < tmpC.length; i++) {

                                                            String subC = "";

                                                            for (int j = 0; j < tmpC.length; j++) {

                                                                     if (i != j) {

                                                                               subC = subC+tmpC[j]+ITEM_SPLIT;

                                                                     }

                                                            }

                                                            if (itemkFcMap.get(subC) == null) {

                                                                     hasInfrequentSubSet = true;

                                                                     break;

                                                            }

                                                   }

                                         }else{

                                                   hasInfrequentSubSet=true;

                                         }

     

                                         if(!hasInfrequentSubSet){

                                                   candidateCollection.put(c, 0);

                                         }

                                }

                       }

     

                       return candidateCollection;

             }

     

            

             private Map<String,Integer> getItem1FC(){

                       Map<String,Integer> sItem1FcMap=new HashMap<String,Integer>();

                       Map<String,Integer> rItem1FcMap=new HashMap<String,Integer>();//频繁1项集

     

                       for(String trans:transList){

                                String[] items=trans.split(ITEM_SPLIT);

                                for(String item:items){

                                         Integer count=sItem1FcMap.get(item+ITEM_SPLIT);

                                         if(count==null){

                                                   sItem1FcMap.put(item+ITEM_SPLIT, 1);

                                         }else{

                                                   sItem1FcMap.put(item+ITEM_SPLIT, count+1);

                                         }

                                }

                       }

     

                       Set<String> keySet=sItem1FcMap.keySet();

                       for(String key:keySet){

                                Integer count=sItem1FcMap.get(key);

                                if(count>=SUPPORT){

                                         rItem1FcMap.put(key, count);

                                }

                       }

                       return rItem1FcMap;

             }

     

       

             public Map<String,Double> getRelationRules(Map<String,Integer> frequentCollectionMap){

                       Map<String,Double> relationRules=new HashMap<String,Double>();

                       Set<String> keySet=frequentCollectionMap.keySet();

                       for (String key : keySet) {

                                double countAll=frequentCollectionMap.get(key);

                                String[] keyItems = key.split(ITEM_SPLIT);

                                if(keyItems.length>1){

                                         List<String> source=new ArrayList<String>();

                                         Collections.addAll(source, keyItems);

                                         List<List<String>> result=new ArrayList<List<String>>();

     

                                         buildSubSet(source,result);//获得source的所有非空子集

     

                                         for(List<String> itemList:result){

                        if(itemList.size()<source.size()){//只处理真子集

                               List<String> otherList=new ArrayList<String>();

                               for(String sourceItem:source){

                                        if(!itemList.contains(sourceItem)){

                                                 otherList.add(sourceItem);

                                        }

                               }

                            String reasonStr="";//前置

                            String resultStr="";//结果

                            for(String item:itemList){

                                    reasonStr=reasonStr+item+ITEM_SPLIT;

                            }

                            for(String item:otherList){

                                    resultStr=resultStr+item+ITEM_SPLIT;

                            }

     

                            double countReason=frequentCollectionMap.get(reasonStr);

                            double itemConfidence=countAll/countReason;//计算置信度

                            if(itemConfidence>=CONFIDENCE){

                                    String rule=reasonStr+CON+resultStr;

                                    relationRules.put(rule, itemConfidence);

                            }

                        }

                                         }

                                }

                       }

     

                       return relationRules;

             }

     

            

             private  void buildSubSet(List<String> sourceSet, List<List<String>> result) {

                       // 仅有一个元素时,递归终止。此时非空子集仅为其自身,所以直接添加到result中

                       if (sourceSet.size() == 1) {

                                List<String> set = new ArrayList<String>();

                                set.add(sourceSet.get(0));

                                result.add(set);

                       } else if (sourceSet.size() > 1) {

                                // 当有n个元素时,递归求出前n-1个子集,在于result中

                                buildSubSet(sourceSet.subList(0, sourceSet.size() - 1), result);

                                int size = result.size();// 求出此时result的长度,用于后面的追加第n个元素时计数

                                // 把第n个元素加入到集合中

                                List<String> single = new ArrayList<String>();

                                single.add(sourceSet.get(sourceSet.size() - 1));

                                result.add(single);

                                // 在保留前面的n-1子集的情况下,把第n个元素分别加到前n个子集中,并把新的集加入到result中;

                                // 为保留原有n-1的子集,所以需要先对其进行复制

                                List<String> clone;

                                for (int i = 0; i < size; i++) {

                                         clone = new ArrayList<String>();

                                         for (String str : result.get(i)) {

                                                   clone.add(str);

                                         }

                                         clone.add(sourceSet.get(sourceSet.size() - 1));

     

                                         result.add(clone);

                                }

                       }

             }

     

             public static void main(String[] args){

                       Apriori apriori=new Apriori();

                       Map<String,Integer> frequentCollectionMap=apriori.getFC();

                       System.out.println("----------------频繁集"+"----------------");

                       Set<String> fcKeySet=frequentCollectionMap.keySet();

                       for(String fcKey:fcKeySet){

                                System.out.println(fcKey+"  :  "+frequentCollectionMap.get(fcKey));

                       }

            Map<String,Double> relationRulesMap=apriori.getRelationRules(frequentCollectionMap);

            System.out.println("----------------关联规则"+"----------------");

            Set<String> rrKeySet=relationRulesMap.keySet();

            for(String rrKey:rrKeySet){

                                System.out.println(rrKey+"  :  "+relationRulesMap.get(rrKey));

                       }

             }

    }

  • 相关阅读:
    java环境变量配置
    线性表基本操作(没实现)
    请求路径问题(视频学习)
    SpringMVC_关于<url-pattern>
    SpringMVC_第一个程序
    Spring与Web
    Spring与MyBatis整合上_Mapper动态代理方式
    Spring_Spring与DAO_Spring的事务管理
    Spring_Spring与DAO_Spring的Jdbc模板
    Spring_Spring与AOP_AspectJ基于XML的实现
  • 原文地址:https://www.cnblogs.com/boqun1991/p/4012904.html
Copyright © 2011-2022 走看看