原题365描述:
计算在一个 32 位的整数的二进制表式中有多少个 1
.
样例
给定 32
(100000),返回 1
给定 5
(101),返回 2
给定 1023
(111111111),返回 9
挑战
If the integer is n bits with m 1 bits. Can you do it in O(m) time?
原题181描述:
如果要将整数A转换为B,需要改变多少个bit位?
注意事项
Both n and m are 32-bit integers.
样例
如把31转换为14,需要改变2个bit位。
(31)10=(11111)2
(14)10=(01110)2
题目分析:
如两题均为二进制操作,使用python内置函数bin(number)转化为二进制处理
注意题目要求32位二进制表示,需要补0或1。
源码:
class Solution: # @param num: an integer # @return: an integer, the number of ones in num def countOnes(self, num): # write your code here twoStr = bin(num).replace('0b','') if twoStr[0] == '-': return 32 - twoStr.count('0') else: return twoStr.count('1')
class Solution: """ @param a, b: Two integer return: An integer """ def bitSwapRequired(self, a, b): # write your code here if a == b : return 0 # 负数补1至32位 if a < 0: strA = bin(a).replace('-0b','') strA = (32-len(strA))*'1' + strA else: # 整数补0至32位 strA = bin(a).replace('0b','') strA = (32-len(strA))*'0' + strA if b < 0: strB = bin(b).replace('-0b','') strB = (32-len(strB))*'1' + strB else: strB = bin(b).replace('0b','') strB = (32-len(strB))*'0' + strB n = len(strA) count = 0 for i in range(-1,-n-1,-1): if strA[i] != strB[i]: count += 1 return count