zoukankan      html  css  js  c++  java
  • hdu6198 number number number(递推公式黑科技)

    number number number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 192    Accepted Submission(s): 126


    Problem Description
    We define a sequence F:

     F0=0,F1=1;
     Fn=Fn1+Fn2 (n2).

    Give you an integer k, if a positive number n can be expressed by
    n=Fa1+Fa2+...+Fak where 0a1a2ak, this positive number is mjfgood. Otherwise, this positive number is mjfbad.
    Now, give you an integer k, you task is to find the minimal positive mjfbad number.
    The answer may be too large. Please print the answer modulo 998244353.
     

    Input
    There are about 500 test cases, end up with EOF.
    Each test case includes an integer k which is described above. (1k109)
     

    Output
    For each case, output the minimal mjfbad number mod 998244353.
     

    Sample Input
    1
     

    Sample Output
    4
     

    Source
     

    Recommend
    liuyiding   |   We have carefully selected several similar problems for you:  6205 6204 6203 6202 6201 
     

    Statistic | Submit | Discuss | Note

    题意:斐波拉契数列,求不能由这些k个斐波那契数列数组成的最小整数

    思路:先手写找规律,再用黑科技代码模板

    //递推公式黑科技
    #include<bits/stdc++.h>
    using namespace std;
    #define X first
    #define Y second
    #define PB push_back
    #define MP make_pair
    #define MEM(x,y) memset(x,y,sizeof(x));
    #define bug(x) cout<<"bug"<<x<<endl;
    typedef long long ll;
    typedef pair<int,int> pii;
    using namespace std;
    const int maxn=1e3+10;
    const int mod=998244353;
    ll powmod(ll a,ll b){
        ll res=1;a%=mod;
        assert(b>=0);
        for(;b;b>>=1){
            if(b&1)res=res*a%mod;a=a*a%mod;
        }
        return res;
    }
    // head
    namespace linear_seq {
        const int N=10010;
        ll res[N],base[N],_c[N],_md[N];
        vector<int> Md;
        void mul(ll *a,ll *b,int k) {
            for(int i=0;i<k+k;i++) _c[i]=0;
            for(int i=0;i<k;i++)
                if (a[i])
                    for(int j=0;j<k;j++) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (int i=k+k-1;i>=k;i--)
                if (_c[i])
                    for(int j=0;j<Md.size();j++)
                        _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            for(int i=0;i<k;i++) a[i]=_c[i];
        }
        int solve(ll n,vector<int> a,vector<int> b) {
        // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
            ll ans=0,pnt=0;
            int k=a.size();
            assert(a.size()==b.size());
            for(int i=0;i<k;i++) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            for(int i=0;i<k;i++) if (_md[i]!=0) Md.push_back(i);
            for(int i=0;i<k;i++) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
                if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    for(int j=0;j<Md.size();j++) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            for(int i=0;i<k;i++) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        vector<int> BM(vector<int> s) {
            vector<int> C(1,1),B(1,1);
            int L=0,m=1,b=1;
            for(int n=0;n<s.size();n++) {
                ll d=0;
                for(int i=0;i<L+1;i++) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) {
                    vector<int> T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (C.size()<B.size()+m) C.PB(0);
                    for(int i=0;i<B.size();i++) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                } else {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (C.size()<B.size()+m) C.PB(0);
                    for(int i=0;i<B.size();i++) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        int gao(vector<int> a,ll n) {
            vector<int> c=BM(a);
            c.erase(c.begin());
            for(int i=0;i<c.size();i++) c[i]=(mod-c[i])%mod;
            return solve(n,c,vector<int>(a.begin(),a.begin()+c.size()));
        }
    };
    
    int main(){
        ll t,n;
    //    cin>>t;
        while(cin>>n){
            cout<<(linear_seq::gao(vector<int>{5,13,34,89},n-1)%mod-1)%mod<<endl;
        }
    }



  • 相关阅读:
    从零开始学安全(四十四)●TCP三次握手四次挥手
    从零开始学安全(四十三)●Wireshark分析ICMP(IP)协议
    从零开始学安全(四十二)●利用Wireshark分析ARP协议数据包
    从零开始学安全(四十一)●初识Wireshark
    从零开始学安全(四十)●上传文件MIME类型绕过漏洞防御
    从零开始学安全(三十九)●FCK编辑器解析漏洞
    《Web安全深度剖析》
    从零开始学安全(三十八)●cobaltstrike生成木马抓肉鸡
    从零开始学安全(三十七)●VM汇编环境搭建
    C#继承练习2
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9387251.html
Copyright © 2011-2022 走看看