zoukankan      html  css  js  c++  java
  • P3222 [HNOI2012]射箭

    传送门

    黄学长的代码好清楚啊……大概搞明白半平面交是个什么玩意儿了……

    设抛物线

    [y=ax^2+bx ]

    [y1<=ax1^2+bx1<=y2 ]

    [ax1^2+bx1>=y1 ]

    [bx1>=y1-ax1^2 ]

    [b>=y1/x1-ax1 ]

    然后就可以转化为一个关于(a,b)的不等式了……那么就二分答案,用半平面交判断又没有解就行了

    //minamoto
    #include<bits/stdc++.h>
    #define double long double
    #define linf 1e15
    #define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
    #define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
    using namespace std;
    #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
    char buf[1<<21],*p1=buf,*p2=buf;
    int read(){
        int res,f=1;char ch;
        while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
        for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
        return res*f;
    }
    const int N=2e5+5;
    struct node{double x,y;};int n,m,ans=0;
    struct line{node a,b;int id;double slop;}q[N],a[N],l[N];
    inline node operator -(node a,node b){return {a.x-b.x,a.y-b.y};}
    inline double operator *(node a,node b){return a.x*b.y-a.y*b.x;}
    double cal(double a,double b,int x){return b/a-a*x;}
    inline bool operator <(line a,line b){return a.slop==b.slop?(a.b-a.a)*(b.a-a.a)<0:a.slop<b.slop;}
    node inter(line a,line b){
        double k1,k2,t;
        k1=(b.b-a.a)*(a.b-a.a);
        k2=(a.b-a.a)*(b.a-a.a);
        t=k2/(k1+k2);
        return {b.a.x+t*(b.b.x-b.a.x),b.a.y+t*(b.b.y-b.a.y)};
    }
    inline bool jd(line a,line b,line c){node p=inter(a,b);return (p-c.a)*(c.b-c.a)>0;}
    bool check(int x){
        int tot=0;
        fp(i,1,m)if(l[i].id<=x&&l[i].slop!=a[tot].slop)a[++tot]=l[i];
        int h=1,t=0;q[++t]=a[1],q[++t]=a[2];
        fp(i,3,tot){
            while(h<t&&jd(q[t-1],q[t],a[i]))--t;
            while(h<t&&jd(q[h+1],q[h],a[i]))++h;
            q[++t]=a[i];
        }
        while(h<t&&jd(q[t-1],q[t],q[h]))--t;
        while(h<t&&jd(q[h+1],q[h],q[t]))++h;
        return t>=h+2;
    }
    int main(){
    //	freopen("testdata.in","r",stdin);
        l[++m].a={-linf,-linf};l[m].b={linf,-linf};
        l[++m].a={linf,-linf};l[m].b={linf,linf};
        l[++m].a={linf,linf};l[m].b={-linf,linf};
        l[++m].a={-linf,linf};l[m].b={-linf,-linf};
        n=read();
        fp(i,1,n){
            double x=read(),ya=read(),yb=read();
            l[++m].a.x=-1,l[m].a.y=cal(x,ya,-1);
            l[m].b.x=1,l[m].b.y=cal(x,ya,1);
            l[++m].a.x=1,l[m].a.y=cal(x,yb,1);
            l[m].b.x=-1,l[m].b.y=cal(x,yb,-1);
            l[m].id=l[m-1].id=i;
        }
        fp(i,1,m)l[i].slop=atan2(l[i].b.y-l[i].a.y,l[i].b.x-l[i].a.x);
        sort(l+1,l+1+m);
        int l=1,r=n,mid;
        while(l<=r){
            mid=(l+r)>>1;
            check(mid)?(ans=mid,l=mid+1):(r=mid-1);
        }printf("%d
    ",ans);return 0;
    }
    
  • 相关阅读:
    MySQL 抓包工具
    php安全配置记录和常见错误梳理
    Mongodb副本集+分片集群环境部署记录
    线上mongodb 数据库用户到期时间修改的操作记录
    Redis+TwemProxy(nutcracker)集群方案部署记录
    Linux下Redis主从复制以及SSDB主主复制环境部署记录
    以多个实例方式打开Notepad++
    什么才是程序员的核心竞争力?zz
    谈谈如何在面试中发掘程序猿的核心竞争力zz
    解决Android SDK Manager更新时出现问题
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10026970.html
Copyright © 2011-2022 走看看