zoukankan      html  css  js  c++  java
  • Problem C: [noip2016十连测第五场]travel (构造+贪心)

    题面

    https://www.lydsy.com/JudgeOnline/upload/201610/statements(1).pdf

    题解

    好神仙的贪心……

    首先无解的情况很容易判断,就是(l=0)(s eq 1)或者(l=n-1)(s eq n),显然了

    我们考虑先往左跳再往右跳,那么肯定得先把左边所有能跳的跳完,如果(l<s),那么最优解肯定是一直往左跳直到次数不够为止,留下最后一次往左跳的次数跳到最左边,不断往右跳玩剩下的就行了

    然而有可能(lgeq s),这种情况就比较(gg)

    先考虑一个特殊情况,就是以(1)为起点,以(n)为终点,我们需要走一些回头路来消耗掉(l),可以把所有((i,i+1))之间的路径看成一条线段,跳可以看做对线段的覆盖,显然所有线段至少得覆盖一次。于是有一个结论就是:至少有(l)条线段被覆盖(3)

    证明:如果一个点(i)要向左跳,那么到达它可以看做从左边先跳到它右边再跳到它,或者直接从左边跳到它,这样的话((i,i-1))被覆盖了一次,它要向左跳,又覆盖了一次,因为以(n)为终点,所以还要跳回来,那么((i-1,i))又被覆盖了一次,所以至少有(l)条线段被覆盖(3)次,证毕

    于是我们(sort)之后选择长度最短的(l)条线段,使它们被覆盖(3)次即可。不难发现这种情况下(l)越小越优

    然而有可能起点不是(1),终点不是(n),因为线段对称,我们假设(s)为起点,(e)为终点,且(s<e),那么我们肯定是让([1,s-1])([e+1,n])之间用掉越多(l)越好,那么([s+1,e-1])之间的部分就可以转化为起点为(1)终点为(n)的情况了

    不难发现([1,s-1])([e+1,n])之间最多用掉(n-e+s-1)(1),且每条线段经过两次

    那么我们只要枚举终点(e)就可以了

    然后就没有然后了

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define pi pair<int,int>
    #define fi first
    #define se second
    #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
    #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
    template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
    using namespace std;
    char buf[1<<21],*p1=buf,*p2=buf;
    inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
    int read(){
    	R int res=1,f=1;R char ch;
    	while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    	for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    	return res*f;
    }
    char sr[1<<21],z[20];int K=-1,Z=0;
    inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
    void print(R int x){
    	if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
    	while(z[++Z]=x%10+48,x/=10);
    	while(sr[++K]=z[Z],--Z);sr[++K]=' ';
    }
    const int N=5e5+5;
    int x[N],y[N],ans1[N],ans2[N],pos[N],tag[N];pi st[N];
    int n,l,s;
    int solve(int n,int l,int s,int *x,int *ans){
    	int cnt=0,top=0;
    	if(l<s){
    		fd(i,s-1,s-l+1)ans[++cnt]=i;
    		fp(i,1,s-l)ans[++cnt]=i;
    		fp(i,s+1,n)ans[++cnt]=i;
    		return x[n]-x[1]+x[s]-x[1];
    	}
    	l-=s-1;
    	if(l==n-s-1){
    		fd(i,s-1,1)ans[++cnt]=i;
    		fd(i,n,s+1)ans[++cnt]=i;
    		return ((x[n]-x[1])<<1)-(x[s+1]-x[s]);
    	}
    	fp(i,s+1,n-2)st[++top]=pi(x[i+1]-x[i],i+1);
    	sort(st+1,st+1+top);
    	fp(i,1,top)pos[st[i].se]=i;
    	int sum=0,mn=0,e,j;
    	fp(i,1,l)sum+=st[i].fi;
    	mn=sum<<1,e=n,j=l;
    	for(R int i=n-1,p=l;i>=n-l;--i){
    		sum-=pos[i]<=p?st[pos[i]].fi:st[p--].fi;
    		while(p&&st[p].se>=i)--p;
    		if(cmin(mn,(sum<<1)+x[n]-x[i]))e=i,j=p;
    	}
    	memset(tag,0,sizeof(tag));
    	fd(i,s-1,1)ans[++cnt]=i;
    	fp(i,s+2,e-1)if(pos[i]<=j)tag[i]=true;
    	fp(i,s+1,e-1)if(!tag[i+1])ans[++cnt]=i;
    	else{
    		int tmp=i+1;while(tag[tmp])++tmp;
    		fd(j,tmp-1,i)ans[++cnt]=j;
    		i=tmp-1;
    	}
    	fd(i,n,e)ans[++cnt]=i;
    	return x[n]-x[1]+x[s]-x[1]+mn;
    }
    int main(){
    //	freopen("testdata.in","r",stdin);
    	freopen("travel.in","r",stdin);
    	freopen("travel.out","w",stdout);
    	n=read(),l=read(),s=read();
    	fp(i,1,n)x[i]=read(),y[n-i+1]=-x[i];
    	if(l==0&&s!=1||l==n-1&&s!=n)return puts("-1"),0;
    	int c1=solve(n,l,s,x,ans1);
    	int c2=solve(n,n-1-l,n+1-s,y,ans2);
    	if(c1<c2){
    		print(c1),sr[K]='
    ';
    		fp(i,1,n-1)print(ans1[i]);
    	}else{
    		print(c2),sr[K]='
    ';
    		fp(i,1,n-1)print(n-ans2[i]+1);
    	}
    	return Ot(),0;
    }
    
  • 相关阅读:
    修改Tomcat的端口号方法
    Java与数据库对应的日期类型
    解决ora-00054 Oracle锁表问题
    qemu+gdb调试内核出现remote ‘g’ packet reply is too long
    构建调试Linux内核网络代码的环境MenuOS系统
    c语言实现简单的hello/hi聊天程序
    traceroute命令研究报告
    c++对象初始化中各构造器的顺序
    嵌入式面试题(1)
    Android驱动笔记(8)——bugreport介绍
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10333639.html
Copyright © 2011-2022 走看看