zoukankan      html  css  js  c++  java
  • R语言与概率统计(三) 多元统计分析(下)广义线性回归

    广义线性回归

    > life<-data.frame(
    +   X1=c(2.5, 173, 119, 10, 502, 4, 14.4, 2, 40, 6.6, 
    +        21.4, 2.8, 2.5, 6, 3.5, 62.2, 10.8, 21.6, 2, 3.4, 
    +        5.1, 2.4, 1.7, 1.1, 12.8, 1.2, 3.5, 39.7, 62.4, 2.4,
    +        34.7, 28.4, 0.9, 30.6, 5.8, 6.1, 2.7, 4.7, 128, 35, 
    +        2, 8.5, 2, 2, 4.3, 244.8, 4, 5.1, 32, 1.4),
    +   X2=rep(c(0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
    +            0, 2, 0, 2, 0, 2, 0),
    +          c(1, 4, 2, 2, 1, 1, 8, 1, 5, 1, 5, 1, 1, 1, 2, 1,
    +            1, 1, 3, 1, 2, 1, 4)),
    +   X3=rep(c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1), 
    +          c(6, 1, 3, 1, 3, 1, 1, 5, 1, 3, 7, 1, 1, 3, 1, 1, 2, 9)),
    +   Y=rep(c(0,  1,   0,  1), c(15, 10, 15, 10))
    + )
    > glm.sol<-glm(Y~X1+X2+X3, family=binomial, data=life)
    > summary(glm.sol)
    
    Call:
    glm(formula = Y ~ X1 + X2 + X3, family = binomial, data = life)
    
    Deviance Residuals: 
        Min       1Q   Median       3Q      Max  
    -1.6960  -0.5842  -0.2828   0.7436   1.9292  
    
    Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
    (Intercept) -1.696538   0.658635  -2.576 0.010000 ** 
    X1           0.002326   0.005683   0.409 0.682308    
    X2          -0.792177   0.487262  -1.626 0.103998    
    X3           2.830373   0.793406   3.567 0.000361 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 67.301  on 49  degrees of freedom
    Residual deviance: 46.567  on 46  degrees of freedom
    AIC: 54.567
    
    Number of Fisher Scoring iterations: 5
    

    可见拟合的效果不好

    > pre<-predict(glm.sol, data.frame(X1=5,X2=2,X3=0))
    > p<-exp(pre)/(1+exp(pre));p#不接受治疗
             1 
    0.03664087 
    > 
    > pre<-predict(glm.sol, data.frame(X1=5,X2=2,X3=1))
    > p<-exp(pre)/(1+exp(pre));p#接受治疗
            1 
    0.3920057 
    > 
    > step(glm.sol)
    Start:  AIC=54.57
    Y ~ X1 + X2 + X3
    
           Df Deviance    AIC
    - X1    1   46.718 52.718
    <none>      46.567 54.567
    - X2    1   49.502 55.502
    - X3    1   63.475 69.475
    
    Step:  AIC=52.72
    Y ~ X2 + X3
    
           Df Deviance    AIC
    <none>      46.718 52.718
    - X2    1   49.690 53.690
    - X3    1   63.504 67.504
    
    Call:  glm(formula = Y ~ X2 + X3, family = binomial, data = life)
    
    Coefficients:
    (Intercept)           X2           X3  
         -1.642       -0.707        2.784  
    
    Degrees of Freedom: 49 Total (i.e. Null);  47 Residual
    Null Deviance:	    67.3 
    Residual Deviance: 46.72 	AIC: 52.72
    
    > glm.new<-update(glm.sol, .~.-X1)
    > summary(glm.new)
    
    Call:
    glm(formula = Y ~ X2 + X3, family = binomial, data = life)
    
    Deviance Residuals: 
        Min       1Q   Median       3Q      Max  
    -1.6849  -0.5949  -0.3033   0.7442   1.9073  
    
    Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
    (Intercept)  -1.6419     0.6381  -2.573 0.010082 *  
    X2           -0.7070     0.4282  -1.651 0.098750 .  
    X3            2.7844     0.7797   3.571 0.000355 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 67.301  on 49  degrees of freedom
    Residual deviance: 46.718  on 47  degrees of freedom
    AIC: 52.718
    
    Number of Fisher Scoring iterations: 5
    
    > 
    > pre<-predict(glm.sol, data.frame(X1=5,X2=2,X3=0))
    > p<-exp(pre)/(1+exp(pre));p#不接受治疗
             1 
    0.03664087 
    > 
    > pre<-predict(glm.sol, data.frame(X1=5,X2=2,X3=1))
    > p<-exp(pre)/(1+exp(pre));p#接受治疗
            1 
    0.3920057 
    
    #####再来看一个类似的问题
    install.packages('AER')
    data(Affairs,package='AER')#婚外情数据,包括9个变量,婚外斯通频率,性别,婚龄等。
    summary(Affairs)
    table(Affairs$affairs)
    #我们感兴趣的是是否有过婚外情所以做如下处理
    Affairs$ynaffair[Affairs$affairs>0]<-1
    Affairs$ynaffair[Affairs$affairs==0]<-0
    Affairs$ynaffair<-factor(Affairs$ynaffair,levels=c(0,1),labels=c('NO','YES'))
    table(Affairs$ynaffair)
    #接下来做逻辑回归
    fit.full=glm(ynaffair~.-affairs,data=Affairs,family=binomial())
    summary(fit.full)
    #除掉较大p值所对应的变量,如性别,是否有孩子、学历和职业在做一次分析
    fit.reduced=glm(ynaffair~age+yearsmarried+religiousness+rating,data=Affairs,family=binomial())
    summary(fit.reduced)
    
    AIC(fit.full,fit.reduced)#模型比较
    
    #系数解释
    exp(coef(fit.reduced))
  • 相关阅读:
    DHCP配置实例
    upupw phpmyadmin写shell
    网络配置课学期总结
    c#写一个网站后台扫描器
    移位运算符
    JavaScript 事件
    JS自动爆炸案例
    生成树协议
    暴力操作节点
    为博客园添加统计访问量的工具
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11164543.html
Copyright © 2011-2022 走看看