zoukankan      html  css  js  c++  java
  • POJ1556 The Doors [线段相交 DP]

    The Doors
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 8334   Accepted: 3218

    Description

    You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

    Input

    The input data for the illustrated chamber would appear as follows. 


    4 2 7 8 9 
    7 3 4.5 6 7 

    The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1. 

    Output

    The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

    Sample Input

    1
    5 4 6 7 8
    2
    4 2 7 8 9
    7 3 4.5 6 7
    -1

    Sample Output

    10.00
    10.06

    Source


    题意:从(0,5)走到(10,5)最短路

    我太傻逼了,查了好长时间计算几何的错,结果是求DAG的DP忘清空vis了
     
    线段相交做两个直线与线段相交就行了
    注意本题一个端点在另一条线上不能算相交哦
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    using namespace std;
    typedef long long ll;
    const int N=205,M=1e4+5;
    const double INF=1e9;
    const double eps=1e-8;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
        return x*f;
    }
    inline int sgn(double x){
        if(abs(x)<eps) return 0;
        else return x<0?-1:1;
    }
    struct Vector{
        double x,y;
        Vector(double a=0,double b=0):x(a),y(b){}
        bool operator <(const Vector &a)const{
            return x<a.x||(x==a.x&&y<a.y);
        }
        void print(){
            printf("%lf %lf
    ",x,y);
        }
    };
    typedef Vector Point;
    Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
    Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
    Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
    Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
    bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==0&&sgn(a.y-b.y)==0;}
    
    double Cross(Vector a,Vector b){
        return a.x*b.y-a.y*b.x;
    }
    double DisPP(Point a,Point b){
        Point t=a-b;
        return sqrt(t.x*t.x+t.y*t.y);
    }
    struct Line{
        Point s,t;
        Line(){}
        Line(Point p,Point v):s(p),t(v){}
    }l[N];
    int cl;
    bool isLSI(Line l1,Line l2){
        Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
        return sgn(Cross(v,u))!=sgn(Cross(v,w))&&sgn(Cross(v,u))!=0&&sgn(Cross(v,w))!=0;
    }
    bool isSSI(Line l1,Line l2){
        return isLSI(l1,l2)&&isLSI(l2,l1);
    }
    bool can(Point a,Point b){
        Line line(a,b);
        for(int i=1;i<=cl;i++)
            if(isSSI(l[i],line)) return false;
        return true;
    }
    
    int n,s,t;
    struct edge{
        int v,ne;
        double w;
    }e[M<<1];
    int h[N],cnt=0;
    inline void ins(int u,int v,double w){//printf("ins %d %d %lf
    ",u,v,w);
        cnt++;
        e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
    }
    double d[N];
    int vis[N];
    
    double dp(int u){
        if(vis[u]) return d[u];
        vis[u]=1;
        for(int i=h[u];i;i=e[i].ne){
            int v=e[i].v;
            d[u]=min(d[u],dp(v)+e[i].w);
        }
        return d[u];
    }
    void DAG(){
        for(int i=s;i<=t;i++) d[i]=INF;
        memset(vis,0,sizeof(vis));
        d[t]=0;vis[t]=1;
        dp(s);
    }
    
    Point p[N][5];
    Point S(0,5),T(10,5);
    inline int idx(int u){return u%4==0?u/4:u/4+1;}
    inline int idy(int u){return u%4==0?4:u%4;}
    double x;
    int main(int argc, const char * argv[]) {
        while(true){
            n=read();s=0;t=4*n+1;
            if(n==-1) break;
            cnt=0;memset(h,0,sizeof(h));
            cl=0;
            
            for(int i=1;i<=n;i++){
                scanf("%lf%lf%lf%lf%lf",&x,&p[i][1].y,&p[i][2].y,&p[i][3].y,&p[i][4].y);
                p[i][1].x=p[i][2].x=p[i][3].x=p[i][4].x=x;
                int num=(i-1)*4;
                //for(int j=1;j<=4;j++) p[i][j].print();
                if(i==1){
                    for(int j=1;j<=4;j++)
                        ins(s,num+j,DisPP(S,p[i][j]));
                }else{
                    for(int j=1;j<=4;j++){
                        for(int u=1;u<=num;u++){
                            if(can(p[idx(u)][idy(u)],p[i][j]))
                                ins(u,num+j,DisPP(p[idx(u)][idy(u)],p[i][j]));
                        }
                        if(can(S,p[i][j])) ins(s,num+j,DisPP(S,p[i][j]));
                    }
                }
                l[++cl]=Line(Point(x,0),p[i][1]);
                l[++cl]=Line(p[i][2],p[i][3]);
                l[++cl]=Line(p[i][4],Point(x,10));
            }
            int num=n*4;
            for(int u=1;u<=num;u++)
                if(can(p[idx(u)][idy(u)],T))
                    ins(u,t,DisPP(p[idx(u)][idy(u)],T));
            if(can(S,T)) {puts("10.00");continue;}
            DAG();
            printf("%.2f
    ",d[s]);
        }
        
        return 0;
    }
     
  • 相关阅读:
    IE7 下父元素及子元素的隐藏顺序带来的 display:none bug
    PHP 类的魔术方法及类的自动加载
    元素及文本的居中
    软件工程个人作业 词频统计
    读书笔记——《最后期限》
    读书笔记——《构建之法》
    [Reading] Asking while Reading
    【Paper Reading】Learning while Reading
    Android学习一:文件操作
    Android学习九:屏幕自适应
  • 原文地址:https://www.cnblogs.com/candy99/p/6353886.html
Copyright © 2011-2022 走看看