zoukankan      html  css  js  c++  java
  • CF498C. Array and Operations [二分图]

    CF498C. Array and Operations

    题意:

    给定一个长为 n 的数组,以及 m 对下标 (a, b) 且满足 a + b 为奇数,每次操作可以将同一组的两个数同时除以一个公约数

    问最多能进行多少次操作

    [1≤n,m ≤100,1≤ai ≤10^9 ]


    根据奇偶性二分图定理此题必定考二分图

    贪心,每次除一个质数

    质数之间是独立的,可以分开考虑每一个质因子

    建图:s -x中质因子p数量-> x -inf-> y -y中质因子p数量-> t

    最大权匹配就是这个质因子能带来的最多操作数

    注意质因子分解别写错了,最后判x>1

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #include <vector>
    #include <set>
    #include <map>
    
    #define fir first
    #define sec second
    using namespace std;
    const int N = 105, inf = 1e9;
    
    
    int n, m, a[N];
    pair<int, int> b[N];
    map<int, int> li[N];
    set<int> s;
    
    void fac(int p) { 
    	int x = a[p], sx = sqrt(x) + 1; //printf("fac %d
    ", a[p]);
    	for(int i=2; i<=sx; i++) if(x % i == 0) { //printf("iii %d
    ", i);
    		int cnt = 0;
    		while(x%i == 0) cnt++, x/=i; //printf("x %d
    ", x);
    		//li[p].push_back(make_pair(i, cnt));
    		li[p][i] = cnt;
    		s.insert(i);
    	}
    	if(x > 1) li[p][x] = 1, s.insert(x);
    }
    
    namespace mf {
    	int s, t;
    	struct edge {int v, ne, c, f;} e[1005];
    	int cnt=1, h[N];
    	void ins(int u, int v, int c) { //printf("ins %d %d %d
    ", u, v, c);
    		e[++cnt] = (edge) {v, h[u], c, 0}; h[u] = cnt;
    		e[++cnt] = (edge) {u, h[v], 0, 0}; h[v] = cnt;
    	}
    	int cur[N], vis[N], d[N], head, tail, q[N];
    	bool bfs() {
    		memset(vis, 0, sizeof(vis));
    		head = tail = 1;
    		q[tail++] = s; d[s] = 0; vis[s] = 1;
    		while(head != tail) {
    			int u = q[head++];
    			for(int i=h[u]; i; i=e[i].ne) {
    				int v = e[i].v;
    				if(!vis[v] && e[i].c > e[i].f) {
    					vis[v] = 1;
    					d[v] = d[u] + 1;
    					q[tail++] = v;
    					if(v == t) return true;
    				}
    			}
    		}
    		return false;
    	}
    	int dfs(int u, int a) {
    		if(u==t || a==0) return a;
    		int flow = 0, f;
    		for(int &i=cur[u]; i; i=e[i].ne) {
    			int v = e[i].v;
    			if(d[v] == d[u]+1 && (f = dfs(v, min(a, e[i].c-e[i].f))) > 0) {
    				flow += f;
    				e[i].f += f;
    				e[i^1].f -= f;
    				a -= f;
    				if(a==0) break;
    			}
    		}
    		if(a) d[u] = -1;
    		return flow;
    	}
    
    	void build(int p) {
    		cnt = 1;
    		memset(h, 0, sizeof(h));
    		s=0; t=n+1;
    		for(int i=1; i<=m; i++) ins(b[i].fir, b[i].sec, inf);
    		for(int i=1; i<=n; i++) if(li[i].count(p)) {
    			if(i & 1) ins(s, i, li[i][p]);
    			else ins(i, t, li[i][p]);
    		}
    	}
    
    	int solve(int p) { //printf("
    solve %d
    ", p);
    		build(p);
    		int flow = 0;
    		while(bfs()) {
    			for(int i=s; i<=t; i++) cur[i] = h[i];
    			flow += dfs(s, inf);
    		}
    		return flow;
    	}
    
    }
    int main() {
    	//freopen("in", "r", stdin);
    	ios::sync_with_stdio(false); cin.tie(); cout.tie();
    
    	cin >> n >> m;
    	for(int i=1; i<=n; i++) cin >> a[i];
    	for(int i=1; i<=m; i++) {
    		cin >> b[i].fir >> b[i].sec;
    		if(b[i].sec & 1) swap(b[i].fir, b[i].sec);
    	}
    
    	for(int i=1; i<=n; i++) fac(i);
    	int ans = 0;
    	
    	for(set<int>::iterator it = s.begin(); it != s.end(); it++) ans += mf::solve(*it);
    	cout << ans;
    }
    
    
  • 相关阅读:
    常用模块Part(1)
    递归函数
    python 生成器函数
    python 迭代器与生成器
    python 函数进阶
    python 装饰器进阶
    python time模块
    python 初始函数
    python 文件操作
    python 一些小知识
  • 原文地址:https://www.cnblogs.com/candy99/p/9325416.html
Copyright © 2011-2022 走看看