zoukankan      html  css  js  c++  java
  • Codeforces Round #597 (Div. 2) F

    F. Daniel and Spring Cleaning

    time limit per test

    2 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it seems like it is broken. When he tries to compute 1+31+3 using the calculator, he gets 22 instead of 44. But when he tries computing 1+41+4, he gets the correct answer, 55. Puzzled by this mystery, he opened up his calculator and found the answer to the riddle: the full adders became half adders!

    So, when he tries to compute the sum a+ba+b using the calculator, he instead gets the xorsum a⊕ba⊕b (read the definition by the link: https://en.wikipedia.org/wiki/Exclusive_or).

    As he saw earlier, the calculator sometimes gives the correct answer. And so, he wonders, given integers ll and rr, how many pairs of integers (a,b)(a,b) satisfy the following conditions:

    a+b=a⊕ba+b=a⊕b

    l≤a≤rl≤a≤r

    l≤b≤rl≤b≤r

    However, Daniel the Barman is going to the bar and will return in two hours. He tells you to solve the problem before he returns, or else you will have to enjoy being blocked.

    Input

    The first line contains a single integer tt (1≤t≤1001≤t≤100) — the number of testcases.

    Then, tt lines follow, each containing two space-separated integers ll and rr (0≤l≤r≤1090≤l≤r≤109).

    Output

    Print tt integers, the ii-th integer should be the answer to the ii-th testcase.

    Example

    input

    Copy

    3
    1 4
    323 323
    1 1000000
    

    output

    Copy

    8
    0
    3439863766
    

    Note

    a⊕ba⊕b denotes the bitwise XOR of aa and bb.

    For the first testcase, the pairs are: (1,2)(1,2), (1,4)(1,4), (2,1)(2,1), (2,4)(2,4), (3,4)(3,4), (4,1)(4,1), (4,2)(4,2), and (4,3)(4,3).

    数位dp还是写过一些题的,不过看到这道题的时候还是没有办法

    立刻想出做法 这里有一个结论就是满足该条件的两个数的二进制同一位不能同时为1

    然后我们根据数位dp的方法搜索出所有可能的对数

    注意的是我们不能用传统的数位dp的做法

    在这里即使该位被限制了,我们也要将这一位记录下来 以后使用

    如果使用传统的数位dp的方法是会超时

    #include<bits/stdc++.h>
    #define int long long
    using namespace std;
    int ar[50];
    int br[50];
    int dp[50][2][2];
    int dfs(int pos,int lim1,int lim2)
    {
        if(pos==0) return 1;
        int ans=0;
        if(dp[pos][lim1][lim2]!=-1)
        {
            return dp[pos][lim1][lim2];
        }
        int sa=lim1?ar[pos]:1;
        int sb=lim2?br[pos]:1;
        for(int i=0;i<=sa;i++)
        {
            for(int j=0;j<=sb;j++)
            {
                if((i&j)==0)
                {
                    ans+=dfs(pos-1,lim1&(sa==i),lim2&(sb==j));
                }
            }
        }
        dp[pos][lim1][lim2]=ans;
        return ans;
    }
    int solve(int a,int b)
    {
        if(a<0||b<0) return 0;
        memset(dp,-1,sizeof(dp));
        for(int i=1;i<=31;i++)
        {
            ar[i]=a&1;
            br[i]=b&1;
            a/=2;
            b/=2;
    //        cout<<ar[i]<<endl;
        }
        return dfs(31,1,1);
    }
    signed main()
    {
        int t;
        scanf("%lld",&t);
        while(t--)
        {
            int a,b;
            scanf("%lld%lld",&a,&b);
            printf("%lld
    ",solve(b,b)-2*solve(a-1,b)+solve(a-1,a-1));
        }
    }
    
    
  • 相关阅读:
    k8s-学习笔记12-权限体系
    Linux上磁盘热插拔
    delphi hashmap
    my gcc project
    gcc dll 导出问题 GTK+Glade3 Gtk-WARNING **: Could not find signal handler 问题最终解析
    c/c++字符串定义及使用的对比
    gcc printf()打印char* str
    gcc选项-g与-rdynamic的异同
    GCC编译,库的编译使用及Makefile
    gcc test
  • 原文地址:https://www.cnblogs.com/caowenbo/p/11852189.html
Copyright © 2011-2022 走看看