zoukankan      html  css  js  c++  java
  • Pandas 数值计算和统计基础

    1.(1)

    # 基本参数:axis、skipna
    
    import numpy as np
    import pandas as pd
    
    df = pd.DataFrame({'key1':[4,5,3,np.nan,2],
                     'key2':[1,2,np.nan,4,5],
                     'key3':[1,2,3,'j','k']},
                     index = ['a','b','c','d','e'])
    print(df)
    print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)
    print('-----')
    
    m1 = df.mean()
    print(m1,type(m1))
    print('单独统计一列:',df['key2'].mean())
    print('-----')
    # np.nan :空值
    # .mean()计算均值
    # 只统计数字列,字符串的列不会进行统计了
    # 可以通过索引单独统计一列
    
    m2 = df.mean(axis=1)
    print(m2)
    print('-----')
    # axis参数:默认为0,以列来计算,axis=1,以行来计算,这里就按照行来汇总了
    
    m3 = df.mean(skipna=False)
    print(m3)
    print('-----')
    # skipna参数:是否忽略NaN,默认True,如False,有NaN的列统计结果仍未NaN

    输出结果:

      key1  key2 key3
    a   4.0   1.0    1
    b   5.0   2.0    2
    c   3.0   NaN    3
    d   NaN   4.0    j
    e   2.0   5.0    k
    float64 float64 object
    -----
    key1    3.5
    key2    3.0
    dtype: float64 <class 'pandas.core.series.Series'>
    单独统计一列: 3.0
    -----
    a    2.5
    b    3.5
    c    3.0
    d    4.0
    e    3.5
    dtype: float64
    -----
    key1   NaN
    key2   NaN
    dtype: float64
    -----

    (2)

    import numpy
    ar = numpy.random.rand(1000)
    ar.mean()   #数组同样计算 引用
    
    输出结果:
    0.50208686016230231

    (3)

    import numpy as np
    import pandas as pd
    df = pd.DataFrame(np.random.randn(10,2),columns = ['A','B'])
    df['means'] = df.mean(axis = 1)   # 新增加一列,列名为’mean',axis= 1表示按行计算均值 ,并把计算的均值添加到列means中
    print(df)
    df.loc['mean'] = df.mean(axis = 0)  # 新增加一行,行名为’mean',axis= 0表示按列计算均值 ,并把计算的均值添加到行mean中 
    df

    输出结果:

              A         B     means
    0  0.477583 -0.848570 -0.185493
    1  0.756248  1.268240  1.012244
    2  1.385510 -0.376960  0.504275
    3 -0.858495  0.814814 -0.021841
    4 -0.555510  0.432579 -0.061465
    5  0.769137  0.245349  0.507243
    6  1.703793  0.587001  1.145397
    7 -1.035849 -0.953496 -0.994673
    8 -0.065659 -0.600356 -0.333008
    9  2.138832  0.053595  1.096213

    2.

    # 主要数学计算方法,可用于Series和DataFrame(1)
    
    df = pd.DataFrame({'key1':np.arange(10),
                      'key2':np.random.rand(10)*10})
    print(df)
    print('-----')
    
    print(df.count(),'→ count统计非Na值的数量
    ')
    print(df.min(),'→ min统计最小值
    ',df['key2'].max(),'→ max统计最大值
    ')
    print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置
    ')
    print(df.sum(),'→ sum求和
    ')
    print(df.mean(),'→ mean求平均值
    ')
    print(df.median(),'→ median求算数中位数,50%分位数
    ')
    print(df.std(),'
    ',df.var(),'→ std,var分别求标准差,方差
    ')
    print(df.skew(),'→ skew样本的偏度
    ')
    print(df.kurt(),'→ kurt样本的峰度
    ')

    输出结果:

     key1      key2
    0     0  6.792638
    1     1  1.049023
    2     2  5.441224
    3     3  4.667631
    4     4  2.053692
    5     5  9.813006
    6     6  5.074884
    7     7  1.526651
    8     8  8.519215
    9     9  3.543486
    -----
    key1    10
    key2    10
    dtype: int64 → count统计非Na值的数量
    
    key1    0.000000
    key2    1.049023
    dtype: float64 → min统计最小值
     9.81300585173231 → max统计最大值
    
    key1    6.750000
    key2    6.454785
    Name: 0.75, dtype: float64 → quantile统计分位数,参数q确定位置
    
    key1    45.00000
    key2    48.48145
    dtype: float64 → sum求和
    
    key1    4.500000
    key2    4.848145
    dtype: float64 → mean求平均值
    
    key1    4.500000
    key2    4.871257
    dtype: float64 → median求算数中位数,50%分位数
    
    key1    3.027650
    key2    2.931062
    dtype: float64 
     key1    9.166667
    key2    8.591127
    dtype: float64 → std,var分别求标准差,方差
    
    key1    0.000000
    key2    0.352466
    dtype: float64 → skew样本的偏度
    
    key1   -1.20000
    key2   -0.79798
    dtype: float64 → kurt样本的峰度

    3.

    # 主要数学计算方法,可用于Series和DataFrame(2)
    
    df['key1_s'] = df['key1'].cumsum()
    df['key2_s'] = df['key2'].cumsum()
    print(df,'→ cumsum样本的累计和
    ')
    
    df['key1_p'] = df['key1'].cumprod()
    df['key2_p'] = df['key2'].cumprod()
    print(df,'→ cumprod样本的累计积
    ')
    
    print(df.cummax(),'
    ',df.cummin(),'→ cummax,cummin分别求累计最大值,累计最小值
    ')
    # 会填充key1,和key2的值

    输出结果:

     key1      key2  key1_s     key2_s
    0     0  6.792638       0   6.792638
    1     1  1.049023       1   7.841661
    2     2  5.441224       3  13.282885
    3     3  4.667631       6  17.950515
    4     4  2.053692      10  20.004208
    5     5  9.813006      15  29.817213
    6     6  5.074884      21  34.892097
    7     7  1.526651      28  36.418749
    8     8  8.519215      36  44.937963
    9     9  3.543486      45  48.481450 → cumsum样本的累计和
    
       key1      key2  key1_s     key2_s  key1_p         key2_p
    0     0  6.792638       0   6.792638       0       6.792638
    1     1  1.049023       1   7.841661       0       7.125633
    2     2  5.441224       3  13.282885       0      38.772160
    3     3  4.667631       6  17.950515       0     180.974131
    4     4  2.053692      10  20.004208       0     371.665151
    5     5  9.813006      15  29.817213       0    3647.152301
    6     6  5.074884      21  34.892097       0   18508.874743
    7     7  1.526651      28  36.418749       0   28256.595196
    8     8  8.519215      36  44.937963       0  240724.006055
    9     9  3.543486      45  48.481450       0  853002.188425 → cumprod样本的累计积
    
       key1      key2  key1_s     key2_s  key1_p         key2_p
    0   0.0  6.792638     0.0   6.792638     0.0       6.792638
    1   1.0  6.792638     1.0   7.841661     0.0       7.125633
    2   2.0  6.792638     3.0  13.282885     0.0      38.772160
    3   3.0  6.792638     6.0  17.950515     0.0     180.974131
    4   4.0  6.792638    10.0  20.004208     0.0     371.665151
    5   5.0  9.813006    15.0  29.817213     0.0    3647.152301
    6   6.0  9.813006    21.0  34.892097     0.0   18508.874743
    7   7.0  9.813006    28.0  36.418749     0.0   28256.595196
    8   8.0  9.813006    36.0  44.937963     0.0  240724.006055
    9   9.0  9.813006    45.0  48.481450     0.0  853002.188425 
        key1      key2  key1_s    key2_s  key1_p    key2_p
    0   0.0  6.792638     0.0  6.792638     0.0  6.792638
    1   0.0  1.049023     0.0  6.792638     0.0  6.792638
    2   0.0  1.049023     0.0  6.792638     0.0  6.792638
    3   0.0  1.049023     0.0  6.792638     0.0  6.792638
    4   0.0  1.049023     0.0  6.792638     0.0  6.792638
    5   0.0  1.049023     0.0  6.792638     0.0  6.792638
    6   0.0  1.049023     0.0  6.792638     0.0  6.792638
    7   0.0  1.049023     0.0  6.792638     0.0  6.792638
    8   0.0  1.049023     0.0  6.792638     0.0  6.792638
    9   0.0  1.049023     0.0  6.792638     0.0  6.792638 → cummax,cummin分别求累计最大值,累计最小值

    4.

    # 唯一值:.unique()
    
    s = pd.Series(list('asdvasdcfgg'))
    sq = s.unique()
    print(s)
    print(sq,type(sq))
    print(pd.Series(sq))
    # 得到一个唯一值数组
    # 通过pd.Series重新变成新的Series
    
    sq.sort()
    print(sq)
    # 重新排序

    输出结果:

    0     a
    1     s
    2     d
    3     v
    4     a
    5     s
    6     d
    7     c
    8     f
    9     g
    10    g
    dtype: object
    ['a' 's' 'd' 'v' 'c' 'f' 'g'] <class 'numpy.ndarray'>
    0    a
    1    s
    2    d
    3    v
    4    c
    5    f
    6    g
    dtype: object
    ['a' 'c' 'd' 'f' 'g' 's' 'v']

    5.

    # 值计数:.value_counts()
    
    sc = s.value_counts(sort = False)  # 也可以这样写:pd.value_counts(sc, sort = False)
    print(sc)
    # 得到一个新的Series,计算出不同值出现的频率
    # sort参数:排序,默认为True

    输出结果:

    d    2
    a    2
    s    2
    c    1
    f    1
    g    2
    v    1
    dtype: int64

    6.

    # 成员资格:.isin()
    
    s = pd.Series(np.arange(10,15))
    df = pd.DataFrame({'key1':list('asdcbvasd'),
                      'key2':np.arange(4,13)})
    print(s)
    print(df)
    print('-----')
    
    print(s.isin([5,14]))   #判断5和14是否在里面
    print(df.isin(['a','bc','10',8]))
    # 用[]表示
    # 得到一个布尔值的Series或者Dataframe

    输出结果:

    0    10
    1    11
    2    12
    3    13
    4    14
    dtype: int32
      key1  key2
    0    a     4
    1    s     5
    2    d     6
    3    c     7
    4    b     8
    5    v     9
    6    a    10
    7    s    11
    8    d    12
    -----
    0    False
    1    False
    2    False
    3    False
    4     True
    dtype: bool
        key1   key2
    0   True  False
    1  False  False
    2  False  False
    3  False  False
    4  False   True
    5  False  False
    6   True  False
    7  False  False
    8  False  False

    课后题:

    写出一个输入元素直接生成数组的代码块,然后创建一个函数,该函数功能用于判断一个Series是否是唯一值数组,返回“是”和“不是”。

    import numpy as np
    import pandas as pd
    #练习1
    ar = eval(input("请输入一组元素,以列表的形式:"))
    s =pd.Series(ar)
    print(s)
    
    def f(s):
        s1 =s.unique()
        if len(s1) == len(s):
            print("该数据是唯一值Series")
        else:
            print("该数据不是唯一值Series")
    
    f(s)
  • 相关阅读:
    JQuery--常用选择器总结
    ASP.NET MVC- ActionFilter的使用
    C#--DataTable与Dataset的互相转换
    C#--List转DataTable(或DataSet)
    JavaScript--遍历table中的tr存对象
    JavaScript--删除Table中当前行
    JavaScript--判断字符是否为空
    JavaScript--为对象动态添加属性和值
    asp.net mvc 单图片上传
    asp.net mvc 多图片上传
  • 原文地址:https://www.cnblogs.com/carlber/p/9919304.html
Copyright © 2011-2022 走看看