zoukankan      html  css  js  c++  java
  • poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318

    TOYS
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 10178   Accepted: 4880

    Description

    Calculate the number of toys that land in each bin of a partitioned toy box. 
    Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys. 

    John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
     
    For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

    Input

    The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

    Output

    The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

    Sample Input

    5 6 0 10 60 0
    3 1
    4 3
    6 8
    10 10
    15 30
    1 5
    2 1
    2 8
    5 5
    40 10
    7 9
    4 10 0 10 100 0
    20 20
    40 40
    60 60
    80 80
     5 10
    15 10
    25 10
    35 10
    45 10
    55 10
    65 10
    75 10
    85 10
    95 10
    0
    

    Sample Output

    0: 2
    1: 1
    2: 1
    3: 1
    4: 0
    5: 1
    
    0: 2
    1: 2
    2: 2
    3: 2
    4: 2
    

    Hint

    As the example illustrates, toys that fall on the boundary of the box are "in" the box.
     
    ------------------------------------------------------------------------------------------------------------------------
    题意不难理解,有那么多的格子,问当有m个点放上去时,每个格子有多少点
     
    自己写了个暴力的超时了,但是有人暴力过了,真是好无语啊~~
    用二分求出精确区间,再判断就可以了
     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <stdlib.h>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <math.h>
     7 #include <ctype.h>
     8 #define eps 1e-6
     9 #define MAX 5010
    10 
    11 using namespace std;
    12 
    13 typedef struct
    14 {
    15     double x,y;
    16 }point;
    17 typedef struct
    18 {
    19     point a,b;
    20 }line;
    21 
    22 line li[MAX];
    23 point p[MAX];
    24 int str[MAX];
    25 
    26 bool  dy(double x,double y){ return x>y+eps; }
    27 bool  xy(double x,double y){ return x<y-eps; }
    28 bool dyd(double x,double y){ return x>y-eps; }
    29 bool xyd(double x,double y){ return x<y+eps; }
    30 bool  dd(double x,double y){ return fabs(x-y)<eps; }
    31 
    32 double crossProduct(point a,point b,point c)
    33 {
    34     return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
    35 }
    36 
    37 void BSearch(point a,int n)
    38 {
    39     int l=0,r=n-1;
    40     while(l<r)
    41     {
    42         int mid=(l+r)/2;
    43         if(crossProduct(li[mid].a,a,li[mid].b)>0) l=mid+1;
    44         else r=mid;
    45     }
    46     if(crossProduct(li[l].a,a,li[l].b)<0)str[l]++;
    47     else str[l+1]++;
    48 }
    49 
    50 int main()
    51 {
    52     int n,m,x1,x2,y1,y2;
    53     int i,j;
    54     int part1,part2;
    55 
    56     point tmp;
    57     while(scanf("%d",&n)!=EOF&&n)
    58     {
    59         scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
    60         memset(str,0,sizeof(str));
    61         for(i=0;i<n;i++)
    62         {
    63              scanf("%d%d",&part1,&part2);
    64              li[i].a.x=part1;
    65              li[i].a.y=y1;
    66              li[i].b.x=part2;
    67              li[i].b.y=y2;
    68         }
    69         for(i=0;i<m;i++)
    70         {
    71             scanf("%lf%lf",&p[i].x,&p[i].y);
    72             BSearch(p[i],n);
    73         }
    74         for(i=0;i<=n;i++)
    75         {
    76             printf("%d: %d
    ",i,str[i]);
    77         }
    78         printf("
    ");
    79     }
    80     return 0;
    81 }
    View Code

    这个暴力的不超时……

    #include <queue>  
    #include <stack>  
    #include <math.h>  
    #include <stdio.h>  
    #include <stdlib.h>  
    #include <iostream>  
    #include <limits.h>  
    #include <string.h>  
    #include <algorithm>  
    using namespace std;  
    const int MAX = 5010;  
    struct SEG{  
        int x1,y1,x2,y2;  
    };  
    SEG s[MAX];  
    struct point{  
        int x,y;  
    };  
    point toy[MAX];  
    int sum[MAX];  
    int crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向   
    {  
        return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);  
    }  
    bool inBox(point t,SEG ls,SEG rs)  
    {  
        point a,b,c,d;  
        a.x = ls.x1; a.y = ls.y1;  
        b.x = ls.x2; b.y = ls.y2;  
        c.x = rs.x2; c.y = rs.y2;  
        d.x = rs.x1; d.y = rs.y1;  
        if( crossProduct(b,t,c) >= 0 && crossProduct(c,t,d) >= 0   
            && crossProduct(d,t,a) >= 0 && crossProduct(a,t,b) >= 0 )  
                return true;  
        return false;  
    }  
    int main()  
    {  
        int n,m,x1,y1,x2,y2,a,b;  
        while( ~scanf("%d",&n) && n )  
        {  
            memset(sum,0,sizeof(sum));  
            scanf("%d %d %d %d %d",&m,&x1,&y1,&x2,&y2);  
            s[0].x1 = x1; s[0].y1 = y1;  
            s[0].x2 = x1; s[0].y2 = y2;  
            for(int i=1; i<=n; i++)  
            {  
                scanf("%d %d",&a,&b);  
                s[i].x1 = a; s[i].y1 = y1;  
                s[i].x2 = b; s[i].y2 = y2;  
            }  
            n++;  
            s[n].x1 = x2; s[n].y1 = y1;  
            s[n].x2 = x2; s[n].y2 = y2;  
            for(int i=0; i<m; i++)  
                scanf("%d %d",&toy[i].x,&toy[i].y);  
            for(int i=0; i<m; i++)  
                for(int k=0; k<n; k++)  
                    if( inBox(toy[i],s[k],s[k+1]) )  
                    {  
                        sum[k]++;  
                        break;  
                    }  
            for(int i=0; i<n; i++)  
                printf("%d: %d/n",i,sum[i]);  
            printf("/n");  
        }  
    return 0;  
    }  
  • 相关阅读:
    HDU3336 Count the string —— KMP next数组
    CodeForces
    51Nod 1627 瞬间移动 —— 组合数学
    51Nod 1158 全是1的最大子矩阵 —— 预处理 + 暴力枚举 or 单调栈
    51Nod 1225 余数之和 —— 分区枚举
    51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP
    51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理
    51Nod XOR key —— 区间最大异或值 可持久化字典树
    HDU4825 Xor Sum —— Trie树
    51Nod 1515 明辨是非 —— 并查集 + 启发式合并
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3873475.html
Copyright © 2011-2022 走看看