题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6621
Problem Description
You have an array: a1, a2, �, an and you must answer for some queries.
For each query, you are given an interval [L, R] and two numbers p and K. Your goal is to find the Kth closest distance between p and aL, aL+1, ..., aR.
The distance between p and ai is equal to |p - ai|.
For example:
A = {31, 2, 5, 45, 4 } and L = 2, R = 5, p = 3, K = 2.
|p - a2| = 1, |p - a3| = 2, |p - a4| = 42, |p - a5| = 1.
Sorted distance is {1, 1, 2, 42}. Thus, the 2nd closest distance is 1.
For each query, you are given an interval [L, R] and two numbers p and K. Your goal is to find the Kth closest distance between p and aL, aL+1, ..., aR.
The distance between p and ai is equal to |p - ai|.
For example:
A = {31, 2, 5, 45, 4 } and L = 2, R = 5, p = 3, K = 2.
|p - a2| = 1, |p - a3| = 2, |p - a4| = 42, |p - a5| = 1.
Sorted distance is {1, 1, 2, 42}. Thus, the 2nd closest distance is 1.
Input
The first line of the input contains an integer T (1
<= T <= 3) denoting the number of test cases.
For each test case:
冘The first line contains two integers n and m (1 <= n, m <= 10^5) denoting the size of array and number of queries.
The second line contains n space-separated integers a1, a2, ..., an (1 <= ai <= 10^6). Each value of array is unique.
Each of the next m lines contains four integers L', R', p' and K'.
From these 4 numbers, you must get a real query L, R, p, K like this:
L = L' xor X, R = R' xor X, p = p' xor X, K = K' xor X, where X is just previous answer and at the beginning, X = 0.
(1 <= L < R <= n, 1 <= p <= 10^6, 1 <= K <= 169, R - L + 1 >= K).
For each test case:
冘The first line contains two integers n and m (1 <= n, m <= 10^5) denoting the size of array and number of queries.
The second line contains n space-separated integers a1, a2, ..., an (1 <= ai <= 10^6). Each value of array is unique.
Each of the next m lines contains four integers L', R', p' and K'.
From these 4 numbers, you must get a real query L, R, p, K like this:
L = L' xor X, R = R' xor X, p = p' xor X, K = K' xor X, where X is just previous answer and at the beginning, X = 0.
(1 <= L < R <= n, 1 <= p <= 10^6, 1 <= K <= 169, R - L + 1 >= K).
Output
For each query print a single line containing the Kth
closest distance between p and aL, aL+1, ..., aR.
Sample Input
1
5 2
31 2 5 45 4
1 5 5 1
2 5 3 2
Sample Output
0
1
求区间内| a[i]-p | 第k小的数,二分答案,查询区间[ p-ans,p+ans ]内数的数量是否大于等于k
#include<iostream> #include<algorithm> using namespace std; #define ll long long #define Max 1000000 #define maxn 100005 int a[maxn],b[maxn],T[maxn<<5],L[maxn<<5],R[maxn<<5],sum[maxn<<5],tot; inline int update(int pre,int l,int r,int x) { int rt=++tot; L[rt]=L[pre]; R[rt]=R[pre]; sum[rt]=sum[pre]+1; if(l<r) { int mid=l+r>>1; if(x<=mid)L[rt]=update(L[pre],l,mid,x); else R[rt]=update(R[pre],mid+1,r,x); } return rt; } inline int query(int u,int v,int ql,int qr,int l,int r) { if(ql<=l&&qr>=r)return sum[v]-sum[u]; int mid=l+r>>1,ans=0; if(ql<=mid)ans+=query(L[u],L[v],ql,qr,l,mid); if(qr>mid)ans+=query(R[u],R[v],ql,qr,mid+1,r); return ans; } int main() { int t; cin>>t; for(int W=1;W<=t;W++) { int n,m; cin>>n>>m; for(int i=1;i<=n;i++) { cin>>a[i]; } T[0]=sum[0]=L[0]=R[0]=tot=0; for(int i=1;i<=n;i++) { T[i]=update(T[i-1],1,Max,a[i]); } int l,r,p,k,x=0; for(int i=1;i<=m;i++) { cin>>l>>r>>p>>k; l^=x;r^=x;p^=x;k^=x; int pl=0,pr=Max; while(pl<pr) { int mid=pl+pr>>1; if(query(T[l-1],T[r],max(1,p-mid),min(Max,p+mid),1,Max)>=k) { x=mid; pr=mid; } else pl=mid+1; } cout<<x<<endl; } } return 0; }