1.文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC|ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法.
解: SELECT(A -> Da) = {b,a}
SELECT(A -> ε) = {c,b,a,#}
SELECT(C -> aADC) ={a}
SELECT(C -> ε) = {#}
SELECT(D -> b) = {b}
SELECT(D -> ε) = {a,#}
·.·SELECT(A -> Da) ∩ SELECT(A -> ε) ≠ Ø
SELECT(C -> aADC) ∩ SELECT(C -> ε) = Ø
SELECT(D -> b) ∩ SELECT(D -> ε) = Ø
.·.G(S)不是LL(1)文法
2.消除左递归之后的表达式文法是否是LL(1)文法?
解: E -> TE'
E' -> +TE' | ε
T -> FT'
T' -> *FT' | ε
F -> (E) | i
SELECT( E' -> +TE' ) -> { + }
SELECT( E' -> ε ) -> { # }
SELECT( T' -> *FT' ) -> { * }
SELECT( T' -> ε ) -> { # }
SELECT( F -> (E) ) -> { ( }
SELECT( F -> i ) -> { i }
·.·SELECT( E' -> +TE' ) ∩ SELECT( E' -> ε ) = Ø
SELECT( T' -> *FT' ) ∩ SELECT( T' -> ε ) = Ø
SELECT( F -> (E) ) ∩ SELECT( F -> i ) = Ø
.·.是LL(1)文法
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
E()
{T();
E'();
}
E'()
T()
T'()
F()
分析程序代码:
void ParseE(){
ParseT();
ParseE'();
}
void ParseT() {
ParseF();
ParseT'();
}
void ParseE'() {
switch(lookahead):
case +:
MatchToken(+);
ParseT();
ParseE'();
break;
case #:
break;
case ):
break;
default:
printf('synax error! ');
exit(0);
}
void ParseF() {
switch(lookahead):
case (:
MatchToken(();
ParseE();
MatchToken());
break;
case i:
MatchToken(i);
break;
default:
printf('synax error! ');
exit(0);
}
void ParseT'()
{
switch(lookahead):
case *:
ParseF();
MatchToken(*);
ParseT'();
break;
case #:
break;
case ):
break;
case +:
break;
default:
printf('synax error! ');
exit(0);
}
4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式