zoukankan      html  css  js  c++  java
  • Xgboost GPU 加速

    import xgboost as xgb
    import numpy as np
    from sklearn.datasets import fetch_covtype
    from sklearn.model_selection import train_test_split
    import time
    
    # Fetch dataset using sklearn
    cov = fetch_covtype()
    X = cov.data
    y = cov.target
    
    # Create 0.75/0.25 train/test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, train_size=0.75, random_state=42)
    
    # Specify sufficient boosting iterations to reach a minimum
    num_round = 25 #3000
    
    # Leave most parameters as default
    param = {'objective': 'multi:softmax', # Specify multiclass classification
             'num_class': 8, # Number of possible output classes
             'tree_method': 'gpu_hist' # Use GPU accelerated algorithm
             }
    
    # Convert input data from numpy to XGBoost format
    dtrain = xgb.DMatrix(X_train, label=y_train)
    dtest = xgb.DMatrix(X_test, label=y_test)
    
    gpu_res = {} # Store accuracy result
    tmp = time.time()
    # Train model
    param['tree_method'] = 'gpu_hist'
    xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=gpu_res)
    print("GPU Training Time: %s seconds" % (str(time.time() - tmp)))
    
    [0]	test-merror:0.254804
    [1]	test-merror:0.247885
    [2]	test-merror:0.24427
    [3]	test-merror:0.240677
    [4]	test-merror:0.238474
    [5]	test-merror:0.234763
    [6]	test-merror:0.232147
    [7]	test-merror:0.229716
    [8]	test-merror:0.227162
    [9]	test-merror:0.224622
    [10]	test-merror:0.222632
    [11]	test-merror:0.220773
    [12]	test-merror:0.218453
    [13]	test-merror:0.215582
    [14]	test-merror:0.214605
    [15]	test-merror:0.212223
    [16]	test-merror:0.211176
    [17]	test-merror:0.209868
    [18]	test-merror:0.208622
    [19]	test-merror:0.205917
    [20]	test-merror:0.20434
    [21]	test-merror:0.203727
    [22]	test-merror:0.202591
    [23]	test-merror:0.201621
    [24]	test-merror:0.199817
    GPU Training Time: 4.505811929702759 seconds
    
    # Repeat for CPU algorithm
    tmp = time.time()
    param['tree_method'] = 'hist'
    cpu_res = {}
    xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=cpu_res)
    print("CPU Training Time: %s seconds" % (str(time.time() - tmp)))
    
    [0]	test-merror:0.254831
    [1]	test-merror:0.247912
    [2]	test-merror:0.244298
    [3]	test-merror:0.24069
    [4]	test-merror:0.238536
    [5]	test-merror:0.234804
    [6]	test-merror:0.232229
    [7]	test-merror:0.229703
    [8]	test-merror:0.227162
    [9]	test-merror:0.224519
    [10]	test-merror:0.222784
    [11]	test-merror:0.220705
    [12]	test-merror:0.21844
    [13]	test-merror:0.21676
    [14]	test-merror:0.214736
    [15]	test-merror:0.212257
    [16]	test-merror:0.210206
    [17]	test-merror:0.209345
    [18]	test-merror:0.207617
    [19]	test-merror:0.206102
    [20]	test-merror:0.205194
    [21]	test-merror:0.202798
    [22]	test-merror:0.202309
    [23]	test-merror:0.200554
    [24]	test-merror:0.199328
    CPU Training Time: 49.719186305999756 seconds
  • 相关阅读:
    PostgreSQL的德哥教程
    pgbench的使用简介
    pg生成日期序列
    在Intellij IDEA 12中Tomcat无法调试
    如何使用命令行来控制IIS服务的启动和停止
    SharePoint Support Engineer 常用技术点
    测试博文写作
    C#数字进制间与字符串类型相互转换
    [转载]INNO Setup 使用笔记
    unity3d 游戏开发引擎
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10774000.html
Copyright © 2011-2022 走看看