大致题意: 给你一张图,其中每个点有一个权值,有两种操作:在两点之间连一条边,询问一个点所在联通块第(k)小的权值。
平衡树
看到第(k)小,应该不难想到平衡树。
为了练习(Splay),所以我是用(Splay)来做这题的。
对于询问操作
对于询问操作,我们只要找到该节点所在(Splay)的根,然后查询第(k)小的权值即可,应该是(Splay)比较模板的操作吧。
因此就不多说了。
下面让我们来重点看一看连边操作。
对于连边操作
这才是真正恶心的操作。
考虑这条边连接的两个节点如果是在同一联通块,则完全不必考虑这条边。
但如果连接的是两个联通块,我们就需要合并这两个(Splay)。
至于如何合并,自然是启发式合并了。
而启发式合并的操作其实也非常简单,就是遍历较小的(Splay),然后把它里面的节点一个一个插入至较大的(Splay)中。
这样的时间复杂度看似极高,实际上均摊之后依然是可以接受的。
具体实现可以见代码。
代码
#include<bits/stdc++.h>
#define N 100000
#define M 300000
#define ull unsigned long long
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
int n,m,a[N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (void)(FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int Top,FoutSize;char ch,*A,*B,Fin[Fsize],Fout[Fsize],Stack[Fsize];
public:
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
inline void read_alpha(char &x) {while(!isalpha(x=tc()));}
inline void writeln(int x) {if(!x) return pc('0'),pc('
');if(x<0) pc('-'),x=-x;while(x) Stack[++Top]=x%10+48,x/=10;while(Top) pc(Stack[Top--]);pc('
');}
inline void clear() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_splay//Splay模板
{
private:
#define PushUp(x) (node[x].Size=node[node[x].Son[0]].Size+node[node[x].Son[1]].Size+1)
#define Which(x) (node[node[x].Father].Son[1]==x)
#define Connect(x,y,d) (node[node[x].Father=y].Son[d]=x)
int rt,tot,data[N+5];
struct Tree
{
int Size,Father,Son[2];
inline void Clear() {Size=1,Father=Son[0]=Son[1]=0;}
}node[(N+M<<1)+5];
inline void Rotate(int x,int &k)
{
register int fa=node[x].Father,pa=node[fa].Father,d=Which(x);
(fa^k?node[pa].Son[Which(fa)]=x:k=x),node[x].Father=pa,Connect(node[x].Son[d^1],fa,d),Connect(fa,x,d^1),PushUp(fa),PushUp(x);
}
inline void Splay(int x,int &k) {for(register int fa=node[x].Father;x^k;Rotate(x,k),fa=node[x].Father) if(fa^k) Rotate(Which(x)^Which(fa)?x:fa,k);}
inline void Insert(int &x,int pos,int lst)
{
if(!x) return (void)(node[x=pos].Clear(),node[x].Father=lst);
Insert(node[x].Son[a[x]<a[pos]],pos,x),PushUp(x);
}
inline void dfs(int x,int rt)//遍历较小的Splay,将其节点一个个插入较大的Splay中
{
if(node[x].Son[0]) dfs(node[x].Son[0],rt);
if(node[x].Son[1]) dfs(node[x].Son[1],rt);
Insert(rt,x,0),Splay(x,rt);//插入
}
public:
inline void Init() {for(register int i=1;i<=n;++i) node[i].Size=1;}
inline void Union(int x,int y)//启发式合并x和y
{
while(node[x].Father) x=node[x].Father;//找到根节点
while(node[y].Father) y=node[y].Father;//找到根节点
if(!(x^y)) return;//如果在同一个联通块内就退出函数
if(node[x].Size<node[y].Size) swap(x,y);
dfs(y,x);
}
inline int get_val(int x,int rk)
{
while(node[x].Father) x=node[x].Father;
if(node[x].Size<rk) return -1;
while(x)
{
if(node[node[x].Son[0]].Size>=rk) x=node[x].Son[0];
else if(node[node[x].Son[0]].Size+1==rk) return x;
else rk-=node[node[x].Son[0]].Size+1,x=node[x].Son[1];
}
}
}splay;
int main()
{
register int i,Q,x,y;register char op;
for(F.read(n),F.read(m),i=1;i<=n;++i) F.read(a[i]);
for(splay.Init(),i=1;i<=m;++i) F.read(x),F.read(y),splay.Union(x,y);
for(F.read(Q);Q;--Q)
{
if(F.read_alpha(op),F.read(x),F.read(y),op^'Q') splay.Union(x,y);
else F.writeln(splay.get_val(x,y));
}
return F.clear(),0;
}