zoukankan      html  css  js  c++  java
  • about rand and reflect

    select
        regexp_replace(reflect("java.util.UUID", "randomUUID"), "-", "") as uuid
        ,rand()      -- rand_num
        ,rand(100)   -- rand_num_seed
    ;
    SELECT * FROM <Table_Name> DISTRIBUTE BY RAND() SORT BY RAND()  LIMIT <N rows to sample>;
    CREATE TABLE lxw1234 AS SELECT * FROM lxw1 TABLESAMPLE (50 PERCENT); -- 取原表中50%的数据
    CREATE TABLE lxw1234_2 AS SELECT * FROM lxw1 TABLESAMPLE (30M);      -- 取原表中30M大的数据
    SELECT COUNT(1) FROM (SELECT * FROM lxw1 TABLESAMPLE (200 ROWS)) x;  -- 取原表中每个map的200行
    SELECT COUNT(1) FROM lxw1 TABLESAMPLE (BUCKET 1 OUT OF 10 ON rand()); -- 将表随机分成10个桶,抽样第一个桶的数据;
    CREATE TABLE lxw1_bucketed (pcid STRING) CLUSTERED BY(pcid) INTO 10 BUCKETS; -- 创建一个分桶表
    INSERT overwrite TABLE lxw1_bucketed SELECT pcid FROM lxw1;                  -- 插入数据
    SELECT COUNT(1) FROM lxw1_bucketed TABLESAMPLE(BUCKET 1 OUT OF 10 ON pcid);  -- 从10个桶中抽样第一个桶的数据
    SELECT COUNT(1) FROM lxw1_bucketed TABLESAMPLE(BUCKET 1 OUT OF 20 ON pcid)   -- 在第一个桶中抽样一半的数据
    SELECT COUNT(1) FROM lxw1 TABLESAMPLE(BUCKET 1 OUT OF 20 ON pcid);           -- 从源表中直接分桶抽样,也能达到一样的效果
    -- Hive实现从表中随机抽样得到一个不重复的数据样本
    select * from table_a order by rand() limit 100;
    select * from (select e.*, cast(rand() * 100000 as int) as vidx from e) vt order by vt.vidx limit 100;
    select
         id
        ,name
        ,age
        ,rank
    from (
        select
             id
            ,name
            ,age
            ,rank
            ,row_number()over(partition by rank order by rand()) as rn
        from a
    ) t
    where t.rn <=2
    ;
  • 相关阅读:
    WebRTC中的NetEQ
    VoIP基本原理
    NetEQ主要文件简介
    声纹识别
    杂记(2019.04.13)
    概率论基础复习
    机器学习复习:模型评估指标
    传统机器学习算法复习:逻辑回归、因子分解机和梯度提升树
    Tensorflow中循环神经网络及其Wrappers
    einsum:爱因斯坦求和约定
  • 原文地址:https://www.cnblogs.com/chenzechao/p/9479331.html
Copyright © 2011-2022 走看看