zoukankan      html  css  js  c++  java
  • 有关二分图匹配的一些算法

      今天学习了下二分图,算是进来的比较新的一块内容了吧。

      关于匈牙利算法之前也看过一些,但一直没怎么搞懂,今天看了个很好的博客,茅塞顿开啊。

      一看就懂的匈牙利算法:http://blog.csdn.net/dark_scope/article/details/8880547

      关于二分图的东西我也不是太懂(自行百度)。再说一些很专业的东西知道了也没什么用(假的),所以很多证明类的东西也不会,也就讲讲板子吧。

      最大匹配:

      匈牙利算法——这是整个二分图中最有用的算法了,也是最基本的算法。

      主要是一个增广路的过程(我乱编的)。

      每次寻找时,如果目标点还没被占用就直接连上。如果被占用了就把目标点和它之前相连的点的边先拆掉,再递归看看原来的匹配点有没有其它的目标点可供选择。

      还是建议看上面的博客(实在是讲不清楚)

      模板CODE

    inline bool find(int now)
    {
        for (int i=head[now];i!=-1;i=e[i].next)
        if (!vis[e[i].to])
        {
            vis[e[i].to]=1;
            if (!from[e[i].to]||find(from[e[i].to]))
            {
                from[e[i].to]=now;
                return 1;
            }
        }
        return 0;
    }

      在主程序中只要(注意要清零vis数组,因为它是记录当次是否匹配成功的),最后ans就是最大匹配

    for (i=1;i<=n;++i)
    {   memset(vis,
    0,sizeof(vis));   ans+=find(i); }

      

      关于二分图其它性质的东西(结论及证明等参考http://blog.csdn.net/flynn_curry/article/details/52966283

      概念:

      最小顶点覆盖:用最少的点,让每条边都至少和其中一个点关联;

      最小边覆盖:用尽量少的不相交简单路径覆盖有向无环图(DAG)G的所有顶点;

      最大独立集:在N个点的图G中选出m个点,使这m个点两两之间没有边的点中,m的最大值。

      结论:

      (a)、对于不存在孤立点的图,最大匹配+最小边覆盖=顶点数;
      (b)、最大独立集+最小顶点覆盖=顶点数;
      二分图中:
      (c)、最大匹配=最小顶点覆盖。

      (其实像我这样的蒟蒻只用记记结论就好了,证明可以看上面的博客,讲的很详细)

      另外有些板子题:

      Luogu 3386:二分图最大匹配的板子题;

      POJ 3041:最小顶点覆盖的板子题;

      POJ 3020:最小边覆盖的板子题;

  • 相关阅读:
    Eclipse中配置约束(DTD,XSD)
    Eclipse集成tomcat
    java使用dom4j对XML进行CURD操作
    SQL数据库操作(CURD)
    Java-IO流总结
    Java-集合框架总结
    AES apache commons-crypto 对称加密
    Redis
    Axis2 客户端调用 设置超时时间
    Sybase 修改数据库默认排序
  • 原文地址:https://www.cnblogs.com/cjjsb/p/8541654.html
Copyright © 2011-2022 走看看