zoukankan      html  css  js  c++  java
  • [BZOJ2127]happiness

    题面戳我

    Solution

    一般这种题就转化成最小割做
    把最大收益转化成最小损失,先把所有收益加入ans

    考虑建图,设S集合为选文的,T为选理的
    单个选的比较简单,就直接连就好了:
    直接令容量(S,x)=选文科的收益,(x,T)=选理科的收益即可。
    那么两个一起选的怎么连?
    设两个人x,y,他们俩一起选文的收益是a,一起选理的收益是b。
    四种情况

    • x,y都选文。此时被割掉的边是(x,T)和(y,T),总损失应为b
    • x,y都选理。此时被割掉的边是(S,x)和(S,y),总损失应为a
    • x选文y选理。此时被割掉的边是(x,T),(S,y)和(x,y),总损失应为a + b
    • x选理y选文。此时被割掉的边是(S,x),(y,T)和(y,x),总损失应为a + b

    这样就能列出一个方程组:

    [egin{cases} (x,T) + (y, T) = b\ (S, x) + (S, y) = a\ (x, T) + (S, y) + (x, y) = a + b\ (S, x) + (y, T) + (y, x) = a + b\ end{cases} ]

    显然无解,这是不定方程
    考虑到不影响其它边,那么取任意一组可行解就好

    [(x, T) = frac {b}{2}\ (y, T) = frac {b}{2}\ (S, x) = frac {a}{2}\ (S, y) = frac {a}{2}\ (x, y) = frac {a + b}{2}\ (y, x) = frac {a + b}{2}\ ]

    连完跑最大流即可

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    # define Copy(a, b) memcpy(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(100010), __(1e6 + 10), INF(2147483647);
    
    IL ll Read(){
        RG char c = getchar(); RG ll x = 0, z = 1;
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int n, m, ans, id[110][110], num, val[6][110][110];
    int w[__], fst[_], nxt[__], to[__], cnt, S, T, lev[_], cur[_];
    queue <int> Q;
    
    IL void Add(RG int u, RG int v, RG int f, RG int _f){
        w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
        w[cnt] = _f; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
    }
    
    IL int Dfs(RG int u, RG int maxf){
        if(u == T) return maxf;
        RG int ret = 0;
        for(RG int &e = cur[u]; e != -1; e = nxt[e]){
            if(lev[to[e]] != lev[u] + 1 || !w[e]) continue;
            RG int f = Dfs(to[e], min(w[e], maxf - ret));
            ret += f; w[e ^ 1] += f; w[e] -= f;
            if(ret == maxf) break;
        }
        return ret;
    }
    
    IL bool Bfs(){
        Fill(lev, 0); lev[S] = 1; Q.push(S);
        while(!Q.empty()){
            RG int u = Q.front(); Q.pop();
            for(RG int e = fst[u]; e != -1; e = nxt[e]){
                if(lev[to[e]] || !w[e]) continue;
                lev[to[e]] = lev[u] + 1;
                Q.push(to[e]);
            }
        }
        return lev[T];
    }
    
    int main(RG int argc, RG char* argv[]){
    	n = Read(); m = Read(); Fill(fst, -1); T = n * m + 1;
    	for(RG int i = 1; i <= n; ++i)
    		for(RG int j = 1; j <= m; ++j)
    			id[i][j] = ++num;
    	for(RG int p = 0; p < 6; ++p){
    		RG int x = n - ((p == 2) | (p == 3)), y = m - ((p == 4) | (p == 5));
    		for(RG int i = 1; i <= x; ++i)
    			for(RG int j = 1; j <= y; ++j){
    				val[p][i][j] = Read(), ans += val[p][i][j];
    				if(p == 0) Add(S, id[i][j], val[p][i][j] << 1, 0);
    				if(p == 1) Add(id[i][j], T, val[p][i][j] << 1, 0);
    				if(p == 3){
    					RG int xx = id[i][j], yy = id[i + 1][j], b = val[p][i][j], a = val[p - 1][i][j];
    					Add(xx, T, b, 0); Add(yy, T, b, 0);
    					Add(S, xx, a, 0); Add(S, yy, a, 0);
    					Add(xx, yy, a + b, a + b);
    				}
    				if(p == 5){
    					RG int xx = id[i][j], yy = id[i][j + 1], b = val[p][i][j], a = val[p - 1][i][j];
    					Add(xx, T, b, 0); Add(yy, T, b, 0);
    					Add(S, xx, a, 0); Add(S, yy, a, 0);
    					Add(xx, yy, a + b, a + b);
    				}
    			}
    	}
        for(ans <<= 1; Bfs(); ) Copy(cur, fst), ans -= Dfs(S, INF);
    	printf("%d
    ", ans >> 1);
        return 0;
    }
    
    

    特别鸣谢ZSY大佬的教导

  • 相关阅读:
    Asp.Net Core Web MVC 调用Grpc,采用依赖注入
    .Net Core框架下 Grpc四种处理方法
    信息系统项目管理师高频考点(第二章)
    系统集成项目管理工程师高频考点(第二章)
    .Net Core框架下实现Grpc客户端和服务端
    .Net Framework框架下实现Grpc客户端和服务端
    Asp.Net Core Mvc项目登录IdentityServer4验证无法跳转问题
    IdentityServer4(五)
    MVC项目登录IdentityServer4报错, The cookie '.AspNetCore.Correlation has set 'SameSite=None' and must also set 'Secure'
    IdentityServer4(二)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8242891.html
Copyright © 2011-2022 走看看