题意:在一串项链中,是环状的,第 i 颗珠子有两个能量a[i]和a[i+1],第i+1颗珠子有两个能量a[i+1]和a[i+2],可以合并两个珠子,得到a[i]*a[i+1]*a[i+2]的能量,这两个珠子合并成a[i]和a[i+2]的新珠子,问通过合理的操作,能得到的最大的能量。
思路:区间dp,首先环状的变成链状的,要把区间翻倍复制,枚举左右端点和每个区间的分界点,得到结果。注意,要先从小到大枚举右端点。
当然也可以开用最外层枚举区间长度得方法。
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <vector> #include <map> #include <set> #include <queue> #include <list> #include <cstdlib> #include <iterator> #include <cmath> #include <iomanip> #include <bitset> #include <cctype> using namespace std; //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const double PI=acos(-1.0); template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } // #define _DEBUG; //*// #ifdef _DEBUG freopen("input", "r", stdin); // freopen("output.txt", "w", stdout); #endif /*-----------------------show time----------------------*/ const int maxn = 109; int n; int a[maxn*2]; int dp[maxn*2][maxn*2]; int main(){ OKC; cin>>n; for(int i=1; i<=n; i++){ cin>>a[i]; a[i+n] = a[i]; } int ans = 0; for(int ri=1; ri<=2*n-1; ri++){ for(int le=ri-1; ri-le+1 <=n&&le>=1; le--){ for(int k=le; k<ri; k++){ dp[le][ri] = max(dp[le][ri] , dp[le][k] + dp[k+1][ri] + a[le]*a[k+1]*a[ri+1]); ans = max(ans, dp[le][ri]); } } } cout<<ans<<endl; return 0; }