zoukankan      html  css  js  c++  java
  • tensorflow学习

    ref: 周莫烦 https://www.youtube.com/watch?v=JKR1Dxinwwc&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=8

    1.训练y=0.1x+0.3表达式的中的w和b

    import tensorflow as tf
    import numpy as np
    #create data
    x_data=np.random.rand(100).astype(np.float32)
    y_data=x_data*0.1+0.3
    
    Weights=tf.Variable(tf.random_uniform([1],-1.0,1.0))
    biases=tf.Variable(tf.zeros([1]))
    
    y=Weights*x_data+biases
    
    loss=tf.reduce_mean(tf.square(y-y_data))
    optimizer=tf.train.GradientDescentOptimizer(0.5)
    train=optimizer.minimize(loss)
    
    init=tf.initialize_all_variables()
    
    with tf.Session() as sess:
        sess.run(init)
        for step in range(201):
            sess.run(train);
            if(step%20==0):
                print(step,sess.run(Weights),sess.run(biases))
    View Code

    2.placeholder的使用

    import tensorflow as tf
    
    input1=tf.placeholder(tf.float32)
    input2=tf.placeholder(tf.float32)
    
    output=tf.multiply(input1,input2)
    
    with tf.Session() as sess:
        print(sess.run(output,feed_dict={input1:[7.0],input2:[2.0]}))
    View Code

     3.简单的神经网络(包含画图)

    用于y=x^2-0.5

    一些随机数生成函数的区别:链接

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    def add_layer(inputs,in_size,out_size,activation_function=None):
        Weights=tf.Variable(tf.random_normal([in_size,out_size]))
        biases=tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b=tf.matmul(inputs,Weights)+biases
        if activation_function==None:
            outputs=Wx_plus_b
        else:
            outputs=activation_function(Wx_plus_b)
        return outputs
    
    x_data=np.linspace(-1,1,300)[:,np.newaxis]
    noise=np.random.normal(0,0.05,x_data.shape)
    y_data=np.square(x_data)-0.5+noise
    
    xs=tf.placeholder(tf.float32,[None,1])
    ys=tf.placeholder(tf.float32,[None,1])
    
    
    l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
    prediction=add_layer(l1,10,1,activation_function=None)
    
    
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
    
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init=tf.initialize_all_variables()
    sess=tf.Session()
    sess.run(init)
    
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.scatter(x_data,y_data)
    plt.ion()
    plt.show()
    
    for i in range(1001):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i%50==0:
            #print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value=sess.run(prediction,feed_dict={xs:x_data})
            lines=ax.plot(x_data,prediction_value,'r-',lw=5)
            if i==1000:
                plt.ioff()
                plt.show()
            else:
                plt.pause(0.1)
    View Code

     4.神经网络训练MNIST

    reduce_sum函数:链接

    import tensorflow as tf
    import numpy as np
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
    
    import matplotlib.pyplot as plt
    def add_layer(inputs,in_size,out_size,activation_function=None):
            Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
            biases=tf.Variable(tf.zeros([1,out_size])+0.1)
            Wx_plus_b=tf.matmul(inputs,Weights)+biases
            if activation_function==None:
                outputs=Wx_plus_b
            else:
                outputs=activation_function(Wx_plus_b)
            return outputs
    
    
    def compute_accuracy(v_xs,v_ys):
        global prediction
        y_pre=sess.run(prediction,feed_dict={xs:v_xs})
        correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
        accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
        result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
        return result
    
    xs=tf.placeholder(tf.float32,[None,784])
    ys=tf.placeholder(tf.float32,[None,10])
    
    
    prediction=add_layer(xs,784,10,activation_function=tf.nn.softmax)
    
    cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
    train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess=tf.Session()
    sess.run(tf.initialize_all_variables())
    
    for i in range(1001):
        batch_xs,batch_ys=mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
        if i%50 ==0:
            print(compute_accuracy(mnist.test.images,mnist.test.labels))
    View Code

     5.图片读取的一些方法 链接

    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    image_contents=tf.read_file('acoustic-guitar-player.jpg')
    #image_contents = tf.gfile.FastGFile('acoustic-guitar-player.jpg', 'rb').read()
    image = tf.image.decode_jpeg(image_contents)
    image = tf.image.resize_image_with_crop_or_pad(image, 227, 227)
    
    with tf.Session() as sess:
        sess.run(image)
        plt.imshow(image.eval())
        plt.show()
    View Code
  • 相关阅读:
    web中状态码及请求方式
    访问服务器时一直在转圈,等待localhost响应
    Address already in use: JVM_Bind 端口被占用的几个解决办法
    Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean (default-clean)
    taotao商城
    Dubbo的学习
    taotao商城
    sql中有一些保留字,当你的字段名是它的保留字时,这个时候sql语句的字段不加``就会报错
    ssm学习的第一个demo---crm(4)
    ssm学习的第一个demo---crm(3)
  • 原文地址:https://www.cnblogs.com/cnblogs321114287/p/7477449.html
Copyright © 2011-2022 走看看