题目描述:
有n朵花,每朵花有三个属性:花形(s)、颜色(c)、气味(m),又三个整数表示。现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量。定义一朵花A比另一朵花B要美丽,当且仅当Sa>=Sb,Ca>=Cb,Ma>=Mb。显然,两朵花可能有同样的属性。需要统计出评出每个等级的花的数量。
输入:
第一行为N,K (1 <= N <= 100,000, 1 <= K <= 200,000 ), 分别表示花的数量和最大属性值。
以下N行,每行三个整数si, ci, mi (1 <= si, ci, mi <= K),表示第i朵花的属性
输出:
包含N行,分别表示评级为0...N-1的每级花的数量。
样例输入:
10 3
3 3 3
2 3 3
2 3 1
3 1 1
3 1 2
1 3 1
1 1 2
1 2 2
1 3 2
1 2 1
样例输出:
3
1
3
0
1
0
1
0
0
1
题解:
三维偏序问题。排序一维,cdq分治一维,最后一维用树状数组就可以啦~最后两维比起树套树,分治+树状数组果然好写得多~
代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #ifdef WIN32 #define LL "%I64d" #else #define LL "%lld" #endif #ifdef CT #define debug(...) printf(__VA_ARGS__) #define setfile() #else #define debug(...) #define filename "" #define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout); #endif #define R register #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++) #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b)) #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b)) #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0) #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0) char B[1 << 15], *S = B, *T = B; inline int FastIn() { R char ch; R int cnt = 0; R bool minus = 0; while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ; ch == '-' ? minus = 1 : cnt = ch - '0'; while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0'; return minus ? -cnt : cnt; } #define maxn 100010 struct Point { int x, y, z, ans, tim; inline bool operator < (const Point &that) const { if (x != that.x) return x < that.x; if (y != that.y) return y < that.y; return z < that.z; } inline bool operator == (const Point &that) const { return x == that.x && y == that.y && z == that.z; } }p[maxn], t[maxn]; int ans[maxn], now, n, k; #define maxm 200010 int bit[maxm], last[maxm]; #define lowbit(_x) ((_x) & -(_x)) inline void add(R int x, R int val) { for (; x <= k; x += lowbit(x)) { if (last[x] != now) bit[x] = 0; bit[x] += val; last[x] = now; } } inline int query(R int x) { R int ret = 0; for (; x; x -= lowbit(x)) { if (last[x] == now) ret += bit[x]; } return ret; } void cdq(R int left, R int right) { if (left == right) return; R int mid = left + right >> 1; cdq(left, mid); cdq(mid + 1, right); ++now; for (R int i = left, j = mid + 1; j <= right; ++j) { for (; i <= mid && p[i].y <= p[j].y; ++i) add(p[i].z, p[i].tim); p[j].ans += query(p[j].z); } R int i, j, kk = 0; for (i = left, j = mid + 1; i <= mid && j <= right; ) { if (p[i].y <= p[j].y) t[kk++] = p[i++]; else t[kk++] = p[j++]; } for (; i <= mid; ) t[kk++] = p[i++]; for (; j <= right; ) t[kk++] = p[j++]; for (R int i = 0; i < kk; ++i) p[left + i] = t[i]; } int main() { // setfile(); n = FastIn(); k = FastIn(); for (R int i = 1; i <= n; ++i) { R int x = FastIn(), y = FastIn(), z = FastIn(); p[i] = (Point) {x, y, z, 0, 1}; } std::sort(p + 1, p + n + 1); R int cnt = 0; for (R int i = 1; i <= n; ++i) { if (p[i] == p[i - 1]) p[cnt].tim++; else p[++cnt] = p[i]; } for(R int i = 1; i <= cnt; ++i) p[i].ans = p[i].tim - 1; cdq(1, cnt); for (R int i = 1; i <= cnt; ++i) ans[p[i].ans] += p[i].tim; for (R int i = 0; i < n; ++i) printf("%d ",ans[i] ); return 0; } /* 5 3 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 */