zoukankan      html  css  js  c++  java
  • POJ 1523 无向图的割点

    SPF
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 6653   Accepted: 3037

    Description

    Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible. 

    Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 

    Input

    The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

    Output

    For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist. 

    The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

    Sample Input

    1 2
    5 4
    3 1
    3 2
    3 4
    3 5
    0
    
    1 2
    2 3
    3 4
    4 5
    5 1
    0
    
    1 2
    2 3
    3 4
    4 6
    6 3
    2 5
    5 1
    0
    
    0

    Sample Output

    Network #1
      SPF node 3 leaves 2 subnets
    
    Network #2
      No SPF nodes
    
    Network #3
      SPF node 2 leaves 2 subnets
      SPF node 3 leaves 2 subnets

    Source

    题意:找出每个割点,然后求出删除这个割点所得的连通分量个数;
    注意:输出格式;
     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<vector>
     7 #include<map>
     8 using namespace std;
     9 const int maxn=1007;
    10 vector<int> G[maxn];
    11 int pre[maxn],ans,root,sum,cnt[maxn];
    12 bool isroot[maxn];
    13 int tarjan(int u,int fa)
    14 {
    15     int lowu=pre[u]=sum++;
    16     int l=G[u].size();
    17     int child=0;
    18     for(int i=0;i<l;i++)
    19     {
    20         int v=G[u][i];
    21         if(!pre[v]){
    22             child++;
    23             int lowv=tarjan(v,u);
    24             lowu=min(lowv,lowu);
    25             if(u==root&&child>1||u!=root&&pre[u]<=lowv){
    26                 cnt[u]++;
    27             }
    28         }
    29         else if(v!=fa) lowu=min(lowu,pre[v]);
    30     }
    31     return lowu;
    32 }
    33 int main()
    34 {
    35     int a,b,tt=1;
    36     bool first=0;
    37     while(1){
    38         if(first) printf("
    ");
    39         else first=1;
    40         for(int i=0;i<maxn;i++) G[i].clear();
    41         scanf("%d",&a);
    42         if(a==0) break;
    43         scanf("%d",&b);
    44         G[a].push_back(b);G[b].push_back(a);
    45         while(1){
    46             scanf("%d",&a);
    47             if(a==0) break;
    48             scanf("%d",&b);
    49             G[a].push_back(b);G[b].push_back(a);
    50         }
    51        memset(pre,0,sizeof(pre));
    52        memset(cnt,0,sizeof(cnt));
    53        memset(isroot,0,sizeof(isroot));
    54        for(int i=1;i<=1000;i++)
    55        {
    56            if(!pre[i]&&G[i].size()>0){
    57               root=i;
    58               isroot[i]=1;
    59               sum=1;
    60               tarjan(i,-1);
    61            }
    62        }
    63        printf("Network #%d
    ",tt++);
    64        bool flag=0;
    65        for(int i=1;i<=maxn;i++)
    66        {
    67            if(cnt[i]&&isroot[i]) {flag=1;printf("  SPF node %d leaves %d subnets
    ",i,cnt[i]+1);}
    68            else if(cnt[i]&&!isroot[i]) {flag=1;printf("  SPF node %d leaves %d subnets
    ",i,cnt[i]+1);}
    69        }
    70        if(!flag) printf("  No SPF nodes
    ");
    71     }
    72     return 0;
    73 }
     
  • 相关阅读:
    面试题--十进制转换成2进制
    c++基础--如何将函数作为参数传递
    面试题--完全二叉树的的最后一层的最右节点
    数据库原理--故障恢复
    数据库原理--事务并发控制
    数据库原理--事务(一)
    数据库原理--1nf 2nf 3nf
    数据库原理--外键和主键
    数据库原理--函数依赖和范式
    人人都有极客精神
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4385877.html
Copyright © 2011-2022 走看看