zoukankan      html  css  js  c++  java
  • VC下勉强可用的list

    linux内核中的list太好用了,可惜VC编译器不支持 typeof 关键字,将linux内核中的list直接移植过来不能用

    修改所有与typeof相关的代码后,终于可以勉强在VC下运行起来了,但是还不完美,list_for_each_entry和list_for_each_entry_safe需要增加一个参数表示变量的类型

    修改后的代码如下

    #ifndef __EKWIN__LIST__H__
    #define __EKWIN__LIST__H__
    
    #define LIST_POISON1  ((struct list_head *) 0)
    #define LIST_POISON2  ((struct list_head *) 0)
    #define HLIST_POISON1  ((struct hlist_node *) 0)
    #define HLIST_POISON2  ((struct hlist_node **) 0)
    
    
    #define prefetch(x) (x)
    #define likely(x)    (x)
    #define unlikely(x)    (x)
    #define container_of(ptr, type, member) 
        (type *)( (char *)ptr - offsetof(type,member) )
    
    /*
     * Simple doubly linked list implementation.
     *
     * Some of the internal functions ("__xxx") are useful when
     * manipulating whole lists rather than single entries, as
     * sometimes we already know the next/prev entries and we can
     * generate better code by using them directly rather than
     * using the generic single-entry routines.
     */
    
    struct list_head {
        struct list_head *next, *prev;
    };
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) 
        struct list_head name = LIST_HEAD_INIT(name)
    
    static inline void INIT_LIST_HEAD(struct list_head *list)
    {
        list->next = list;
        list->prev = list;
    }
    
    static inline void __list_add(struct list_head *node,
                      struct list_head *prev,
                      struct list_head *next)
    {
        next->prev = node;
        node->next = next;
        node->prev = prev;
        prev->next = node;
    }
    
    /**
     * list_add - add a new entry
     * @new: new entry to be added
     * @head: list head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static inline void list_add(struct list_head *node, struct list_head *head)
    {
        __list_add(node, head, head->next);
    }
    
    
    /**
     * list_add_tail - add a new entry
     * @new: new entry to be added
     * @head: list head to add it before
     *
     * Insert a new entry before the specified head.
     * This is useful for implementing queues.
     */
    static inline void list_add_tail(struct list_head *node, struct list_head *head)
    {
        __list_add(node, head->prev, head);
    }
    
    /*
     * Delete a list entry by making the prev/next entries
     * point to each other.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
        next->prev = prev;
        prev->next = next;
    }
    
    /**
     * list_del - deletes entry from list.
     * @entry: the element to delete from the list.
     * Note: list_empty() on entry does not return true after this, the entry is
     * in an undefined state.
     */
    static inline void list_del(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
        entry->next = LIST_POISON1;
        entry->prev = LIST_POISON2;
    }
    
    /**
     * list_replace - replace old entry by new one
     * @old : the element to be replaced
     * @new : the new element to insert
     *
     * If @old was empty, it will be overwritten.
     */
    static inline void list_replace(struct list_head *old,
                    struct list_head *node)
    {
        node->next = old->next;
        node->next->prev = node;
        node->prev = old->prev;
        node->prev->next = node;
    }
    
    static inline void list_replace_init(struct list_head *old,
                        struct list_head *node)
    {
        list_replace(old, node);
        INIT_LIST_HEAD(old);
    }
    
    /**
     * list_del_init - deletes entry from list and reinitialize it.
     * @entry: the element to delete from the list.
     */
    static inline void list_del_init(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
        INIT_LIST_HEAD(entry);
    }
    
    /**
     * list_move - delete from one list and add as another's head
     * @list: the entry to move
     * @head: the head that will precede our entry
     */
    static inline void list_move(struct list_head *list, struct list_head *head)
    {
        __list_del(list->prev, list->next);
        list_add(list, head);
    }
    
    /**
     * list_move_tail - delete from one list and add as another's tail
     * @list: the entry to move
     * @head: the head that will follow our entry
     */
    static inline void list_move_tail(struct list_head *list,
                      struct list_head *head)
    {
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
    }
    
    /**
     * list_is_last - tests whether @list is the last entry in list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static inline int list_is_last(const struct list_head *list,
                    const struct list_head *head)
    {
        return list->next == head;
    }
    static inline int list_is_first(const struct list_head *list,
                    const struct list_head *head)
    {
        return list->prev == head;
    }
    
    /**
     * list_empty - tests whether a list is empty
     * @head: the list to test.
     */
    static inline int list_empty(const struct list_head *head)
    {
        return head->next == head;
    }
    
    /**
     * list_empty_careful - tests whether a list is empty and not being modified
     * @head: the list to test
     *
     * Description:
     * tests whether a list is empty _and_ checks that no other CPU might be
     * in the process of modifying either member (next or prev)
     *
     * NOTE: using list_empty_careful() without synchronization
     * can only be safe if the only activity that can happen
     * to the list entry is list_del_init(). Eg. it cannot be used
     * if another CPU could re-list_add() it.
     */
    static inline int list_empty_careful(const struct list_head *head)
    {
        struct list_head *next = head->next;
        return (next == head) && (next == head->prev);
    }
    
    /**
     * list_is_singular - tests whether a list has just one entry.
     * @head: the list to test.
     */
    static inline int list_is_singular(const struct list_head *head)
    {
        return !list_empty(head) && (head->next == head->prev);
    }
    
    static inline void __list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        struct list_head *new_first = entry->next;
        list->next = head->next;
        list->next->prev = list;
        list->prev = entry;
        entry->next = list;
        head->next = new_first;
        new_first->prev = head;
    }
    
    /**
     * list_cut_position - cut a list into two
     * @list: a new list to add all removed entries
     * @head: a list with entries
     * @entry: an entry within head, could be the head itself
     *    and if so we won't cut the list
     *
     * This helper moves the initial part of @head, up to and
     * including @entry, from @head to @list. You should
     * pass on @entry an element you know is on @head. @list
     * should be an empty list or a list you do not care about
     * losing its data.
     *
     */
    static inline void list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        if (list_empty(head))
            return;
        if (list_is_singular(head) &&
            (head->next != entry && head != entry))
            return;
        if (entry == head)
            INIT_LIST_HEAD(list);
        else
            __list_cut_position(list, head, entry);
    }
    
    static inline void __list_splice(const struct list_head *list,
                     struct list_head *prev,
                     struct list_head *next)
    {
        struct list_head *first = list->next;
        struct list_head *last = list->prev;
    
        first->prev = prev;
        prev->next = first;
    
        last->next = next;
        next->prev = last;
    }
    
    /**
     * list_splice - join two lists, this is designed for stacks
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice(const struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head, head->next);
    }
    
    /**
     * list_splice_tail - join two lists, each list being a queue
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice_tail(struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head->prev, head);
    }
    
    /**
     * list_splice_init - join two lists and reinitialise the emptied list.
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * The list at @list is reinitialised
     */
    static inline void list_splice_init(struct list_head *list,
                        struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head, head->next);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_splice_tail_init - join two lists and reinitialise the emptied list
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * Each of the lists is a queue.
     * The list at @list is reinitialised
     */
    static inline void list_splice_tail_init(struct list_head *list,
                         struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head->prev, head);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_entry - get the struct for this entry
     * @ptr:    the &struct list_head pointer.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_entry(ptr, type, member) 
        container_of(ptr, type, member)
    
    /**
     * list_first_entry - get the first element from a list
     * @ptr:    the list head to take the element from.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_struct within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_first_entry(ptr, type, member) 
        list_entry((ptr)->next, type, member)
    #define list_last_entry(ptr, type, member) 
        list_entry((ptr)->prev, type, member)
    
    /**
     * list_for_each    -    iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each(pos, head) 
        for (pos = (head)->next; prefetch(pos->next), pos != (head); 
                pos = pos->next)
    
    /**
     * __list_for_each    -    iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     *
     * This variant differs from list_for_each() in that it's the
     * simplest possible list iteration code, no prefetching is done.
     * Use this for code that knows the list to be very short (empty
     * or 1 entry) most of the time.
     */
    #define __list_for_each(pos, head) 
        for (pos = (head)->next; pos != (head); pos = pos->next)
    
    /**
     * list_for_each_prev    -    iterate over a list backwards
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each_prev(pos, head) 
        for (pos = (head)->prev; prefetch(pos->prev), pos != (head); 
                pos = pos->prev)
    
    /**
     * list_for_each_safe - iterate over a list safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_safe(pos, n, head) 
        for (pos = (head)->next, n = pos->next; pos != (head); 
            pos = n, n = pos->next)
    
    /**
     * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_prev_safe(pos, n, head) 
        for (pos = (head)->prev, n = pos->prev; 
             prefetch(pos->prev), pos != (head); 
             pos = n, n = pos->prev)
    
    /**
     * list_for_each_entry    -    iterate over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_for_each_entry(postp, pos, head, member)                
        for (pos = list_entry((head)->next, postp, member);    
             prefetch(pos->member.next), &pos->member != (head);     
             pos = list_entry(pos->member.next, postp, member))
    
    /**
     * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_for_each_entry_safe(postp, pos, n, head, member)            
        for (pos = list_entry((head)->next, postp, member),    
            n = list_entry(pos->member.next, postp, member);    
             &pos->member != (head);                     
             pos = n, n = list_entry(n->member.next, postp, member))
    
    
    /*
     * Double linked lists with a single pointer list head.
     * Mostly useful for hash tables where the two pointer list head is
     * too wasteful.
     * You lose the ability to access the tail in O(1).
     */
    
    struct hlist_head {
        struct hlist_node *first;
    };
    
    struct hlist_node {
        struct hlist_node *next, **pprev;
    };
    
    #define HLIST_HEAD_INIT { .first = NULL }
    #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
    #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
    static inline void INIT_HLIST_NODE(struct hlist_node *h)
    {
        h->next = NULL;
        h->pprev = NULL;
    }
    
    static inline int hlist_unhashed(const struct hlist_node *h)
    {
        return !h->pprev;
    }
    
    static inline int hlist_empty(const struct hlist_head *h)
    {
        return !h->first;
    }
    
    static inline void __hlist_del(struct hlist_node *n)
    {
        struct hlist_node *next = n->next;
        struct hlist_node **pprev = n->pprev;
        *pprev = next;
        if (next)
            next->pprev = pprev;
    }
    
    static inline void hlist_del(struct hlist_node *n)
    {
        __hlist_del(n);
        n->next = HLIST_POISON1;
        n->pprev = HLIST_POISON2;
    }
    
    static inline void hlist_del_init(struct hlist_node *n)
    {
        if (!hlist_unhashed(n)) {
            __hlist_del(n);
            INIT_HLIST_NODE(n);
        }
    }
    
    static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
    {
        struct hlist_node *first = h->first;
        n->next = first;
        if (first)
            first->pprev = &n->next;
        h->first = n;
        n->pprev = &h->first;
    }
    
    /* next must be != NULL */
    static inline void hlist_add_before(struct hlist_node *n,
                        struct hlist_node *next)
    {
        n->pprev = next->pprev;
        n->next = next;
        next->pprev = &n->next;
        *(n->pprev) = n;
    }
    
    static inline void hlist_add_after(struct hlist_node *n,
                        struct hlist_node *next)
    {
        next->next = n->next;
        n->next = next;
        next->pprev = &n->next;
    
        if(next->next)
            next->next->pprev  = &next->next;
    }
    
    /*
     * Move a list from one list head to another. Fixup the pprev
     * reference of the first entry if it exists.
     */
    static inline void hlist_move_list(struct hlist_head *old,
                       struct hlist_head *node)
    {
        node->first = old->first;
        if (node->first)
            node->first->pprev = &node->first;
        old->first = NULL;
    }
    
    #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
    
    #define hlist_for_each(pos, head) 
        for (pos = (head)->first; pos; 
             pos = pos->next)
    
    #define hlist_for_each_safe(pos, n, head) 
        for (pos = (head)->first; pos; 
             pos = n)
    
    /**
     * hlist_for_each_entry    - iterate over list of given type
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry(tpos, pos, head, member)             
        for (pos = (head)->first;                     
             pos && ({ prefetch(pos->next); 1;}) &&             
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    
    /**
     * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @n:        another &struct hlist_node to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_safe(tpos, pos, n, head, member)          
        for (pos = (head)->first;                     
             pos && ({ n = pos->next; 1; }) &&                  
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = n)
    
    
    
    #define list_next(ptr) 
        ((ptr)->member.next)
    #define list_prev(ptr, member) 
        ((ptr)->member.prev)
    
    
    static inline int list_count(struct list_head *head)
    {
        int count = 0;
        struct list_head *pos;
    
        list_for_each(pos, head) {
            count++;
        }
        return count;
    }
    
    /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
    #define GOLDEN_RATIO_PRIME_32 0x9e370001UL
    #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_32
    #define hash_long(val, bits) hash_32(val, bits)
    
    static inline unsigned int hash_32(unsigned int val, unsigned int bits)
    {
        /* On some cpus multiply is faster, on others gcc will do shifts */
        unsigned int hash = val * GOLDEN_RATIO_PRIME_32;
    
        /* High bits are more random, so use them. */
        return hash >> (32 - bits);
    }
    
    static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
    {
        return hash_long((unsigned long)ptr, bits);
    }
    
    #endif // __EKWIN__LIST__H__
  • 相关阅读:
    关于 haproxy keepalived的测试
    关于 tornado.simple_httpclient SimpleAsyncHTTPClient fetch下载大文件,默认60s的问题
    Linux系统性能监控工具介绍之-tsar
    linux 系统监控好文
    python中字符串使用需要注意的地方
    如何搭建一个GitHub在自己的服务器上?
    linux使用FIO测试磁盘的iops
    适合编程学习的网站
    linux swap的添加等等
    redis主从复制原理与优化
  • 原文地址:https://www.cnblogs.com/cppboy/p/3717632.html
Copyright © 2011-2022 走看看