zoukankan      html  css  js  c++  java
  • POJ 2914 Minimum Cut

    Minimum Cut

    Time Limit: 10000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 2914
    64-bit integer IO format: %lld      Java class name: Main
     

    Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

     

    Input

    Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following areM lines, each line contains M integers AB and C (0 ≤ AB < NA ≠ BC > 0), meaning that there C edges connecting vertices A and B.

    Output

    There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

     

    Sample Input

    3 3
    0 1 1
    1 2 1
    2 0 1
    4 3
    0 1 1
    1 2 1
    2 3 1
    8 14
    0 1 1
    0 2 1
    0 3 1
    1 2 1
    1 3 1
    2 3 1
    4 5 1
    4 6 1
    4 7 1
    5 6 1
    5 7 1
    6 7 1
    4 0 1
    7 3 1

    Sample Output

    2
    1
    2

    Source

     
    解题:无向图的最小割。Stoer-Wagner 算法
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 510;
    18 int e[maxn][maxn],n,m;
    19 bool comb[maxn];
    20 int Find(int &s,int &t){
    21     bool vis[maxn];
    22     int w[maxn];
    23     memset(vis,false,sizeof(vis));
    24     memset(w,0,sizeof(w));
    25     int tmp = INF;
    26     for(int i = 0; i < n; ++i){
    27         int theMax = -INF;
    28         for(int j = 0; j < n; j++)
    29             if(!vis[j] && !comb[j] && w[j] > theMax)
    30                 theMax = w[tmp = j];
    31         if(t == tmp) break;
    32         s = t;
    33         vis[t = tmp] = true;
    34         for(int j = 0; j < n; j++)
    35             if(!vis[j] && !comb[j])
    36                 w[j] += e[t][j];
    37     }
    38     return w[t];
    39 }
    40 int solve(){
    41     int ans = INF,s,t;
    42     memset(comb,0,sizeof(comb));
    43     for(int i = 1; i < n; i++){
    44         s = t = -1;
    45         ans = min(ans,Find(s,t));
    46         for(int j = 0; j < n; j++){
    47             e[s][j] += e[t][j];
    48             e[j][s] += e[j][t];
    49         }
    50         comb[t] = true;
    51     }
    52     return ans;
    53 }
    54 int main() {
    55     int u,v,w;
    56     while(~scanf("%d %d",&n,&m)){
    57         memset(e,0,sizeof(e));
    58         while(m--){
    59             scanf("%d %d %d",&u,&v,&w);
    60             e[u][v] += w;
    61             e[v][u] += w;
    62         }
    63         printf("%d
    ",solve());
    64     }
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    WebAPI下的如何实现参数绑定
    MYSQL主从不同步延迟原理
    mysql的limit经典用法及优化
    ASP.NET MVC中的模型绑定
    使用EF实现数据库的增删改查
    NoSQL数据库技术特性解析之文档数据库
    MySQL 缓存 Query Cache
    Loadrunner test web service which need username and password
    vb写文件时报'Invalid procedure call or argument'
    Shell 笔记
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4003897.html
Copyright © 2011-2022 走看看