5. Longest Palindromic Substring
Problem's Link
----------------------------------------------------------------------------
Mean:
给定一个字符串,输出这个字符串的最长回文子串.
analyse:
水题.
使用Manacher算法求Ma和Mp数组,根据这两个数组来构造最长回文子串即可.
Time complexity: O(N)
view code
/**
* -----------------------------------------------------------------
* Copyright (c) 2015 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2015-12-10-11.04
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
/*
Given a string S, find the longest palindromic substring in S.
You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
*/
class Solution
{
public:
/** O(n)内求出所有回文串
*原串 :abaaba
*Ma串 :.,a,b,a,a,b,a,
*Mp[i]:Ma串中,以字符Ma[i]为中心的最长回文子串的半径长度(包括Ma[i],也就是把回文串对折后的长度).
****经过对原串扩展处理后,将奇数串的情况也合并到了偶数的情况(不需要考虑奇数串)
*/
const static int MAXN=1010;
char Ma[MAXN*2],s[MAXN];
int Mp[MAXN*2],Mplen;
void Manacher(string s)
{
memset(Ma,' ',sizeof Ma);
int len=s.length();
int le=0;
Ma[le++]='.';
Ma[le++]=',';
for(int i=0;i<len;++i)
{
Ma[le++]=s.at(i);
Ma[le++]=',';
}
Mplen=le;
Ma[le]=0;
int pnow=0,pid=0;
for(int i=1;i<le;++i)
{
if(pnow>i)
Mp[i]=min(Mp[2*pid-i],pnow-i);
else
Mp[i]=1;
for(;Ma[i-Mp[i]]==Ma[i+Mp[i]];++Mp[i]);
if(i+Mp[i]>pnow)
{
pnow=i+Mp[i];
pid=i;
}
}
}
string longestPalindrome(string s)
{
int idx=0;
int MaxPalindomLength=1;
Manacher(s);
for(int i=0;i<Mplen;++i)
{
if(Mp[i]>MaxPalindomLength)
MaxPalindomLength=Mp[i],idx=i;
}
--MaxPalindomLength;
int startPos=idx-MaxPalindomLength+1;
char str[MAXN];
int strLen=0;
for(int i=startPos;strLen<MaxPalindomLength;i+=2)
str[strLen++]=Ma[i];
str[strLen]=' ';
return string(str);
}
};
int main()
{
Solution solution;
string s;
while(cin>>s)
{
cout<<solution.longestPalindrome(s)<<endl;
}
return 0;
}
* -----------------------------------------------------------------
* Copyright (c) 2015 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2015-12-10-11.04
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
/*
Given a string S, find the longest palindromic substring in S.
You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
*/
class Solution
{
public:
/** O(n)内求出所有回文串
*原串 :abaaba
*Ma串 :.,a,b,a,a,b,a,
*Mp[i]:Ma串中,以字符Ma[i]为中心的最长回文子串的半径长度(包括Ma[i],也就是把回文串对折后的长度).
****经过对原串扩展处理后,将奇数串的情况也合并到了偶数的情况(不需要考虑奇数串)
*/
const static int MAXN=1010;
char Ma[MAXN*2],s[MAXN];
int Mp[MAXN*2],Mplen;
void Manacher(string s)
{
memset(Ma,' ',sizeof Ma);
int len=s.length();
int le=0;
Ma[le++]='.';
Ma[le++]=',';
for(int i=0;i<len;++i)
{
Ma[le++]=s.at(i);
Ma[le++]=',';
}
Mplen=le;
Ma[le]=0;
int pnow=0,pid=0;
for(int i=1;i<le;++i)
{
if(pnow>i)
Mp[i]=min(Mp[2*pid-i],pnow-i);
else
Mp[i]=1;
for(;Ma[i-Mp[i]]==Ma[i+Mp[i]];++Mp[i]);
if(i+Mp[i]>pnow)
{
pnow=i+Mp[i];
pid=i;
}
}
}
string longestPalindrome(string s)
{
int idx=0;
int MaxPalindomLength=1;
Manacher(s);
for(int i=0;i<Mplen;++i)
{
if(Mp[i]>MaxPalindomLength)
MaxPalindomLength=Mp[i],idx=i;
}
--MaxPalindomLength;
int startPos=idx-MaxPalindomLength+1;
char str[MAXN];
int strLen=0;
for(int i=startPos;strLen<MaxPalindomLength;i+=2)
str[strLen++]=Ma[i];
str[strLen]=' ';
return string(str);
}
};
int main()
{
Solution solution;
string s;
while(cin>>s)
{
cout<<solution.longestPalindrome(s)<<endl;
}
return 0;
}