zoukankan      html  css  js  c++  java
  • 雪花算法的分布式使用方式

    我们都知道在一个分布式系统中生成一个无重复的标识是非常重要的,业界也有很多算法。

    其中一个很出名的就是推特的雪花算法,贴一下java的源码(推特是python写的,下面是java改写的):

    package com.cnblogs.util;
    
    /**
     * Twitter_Snowflake<br>
     * SnowFlake的结构如下(每部分用-分开):<br>
     * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
     * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
     * 41位时间戳(毫秒级),注意,41位时间戳不是存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 开始时间戳)
     * 得到的值),这里的的开始时间戳,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间戳,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
     * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
     * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间戳)产生4096个ID序号<br>
     * 加起来刚好64位,为一个Long型。<br>
     * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
     */
    public class SnowflakeIdWorker {
    
        // ==============================Fields===========================================
        /** 开始时间截 (201-01-01) */
        private final long twepoch = 1514736000000L;
    
        /** 机器id所占的位数 */
        private final long workerIdBits = 5L;
    
        /** 数据标识id所占的位数 */
        private final long datacenterIdBits = 5L;
    
        /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
        private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    
        /** 支持的最大数据标识id,结果是31 */
        private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    
        /** 序列在id中占的位数 */
        private final long sequenceBits = 12L;
    
        /** 机器ID向左移12位 */
        private final long workerIdShift = sequenceBits;
    
        /** 数据标识id向左移17位(12+5) */
        private final long datacenterIdShift = sequenceBits + workerIdBits;
    
        /** 时间截向左移22位(5+5+12) */
        private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
        /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
        private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    
        /** 工作机器ID(0~31) */
        private long workerId;
    
        /** 数据中心ID(0~31) */
        private long datacenterId;
    
        /** 毫秒内序列(0~4095) */
        private long sequence = 0L;
    
        /** 上次生成ID的时间截 */
        private long lastTimestamp = -1L;
    
        //==============================Constructors=====================================
        /**
         * 构造函数
         * @param workerId 工作ID (0~31)
         * @param datacenterId 数据中心ID (0~31)
         */
        public SnowflakeIdWorker(long workerId, long datacenterId) {
            if (workerId > maxWorkerId || workerId < 0) {
                throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
            }
            if (datacenterId > maxDatacenterId || datacenterId < 0) {
                throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
            }
            this.workerId = workerId;
            this.datacenterId = datacenterId;
        }
    
        // ==============================Methods==========================================
        /**
         * 获得下一个ID (该方法是线程安全的)
         * @return SnowflakeId
         */
        public synchronized long nextId() {
            long timestamp = timeGen();
    
            //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
            if (timestamp < lastTimestamp) {
                throw new RuntimeException(
                        String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
            }
    
            //如果是同一时间生成的,则进行毫秒内序列
            if (lastTimestamp == timestamp) {
                sequence = (sequence + 1) & sequenceMask;
                //毫秒内序列溢出
                if (sequence == 0) {
                    //阻塞到下一个毫秒,获得新的时间戳
                    timestamp = tilNextMillis(lastTimestamp);
                }
            }
            //时间戳改变,毫秒内序列重置
            else {
                sequence = 0L;
            }
    
            //上次生成ID的时间截
            lastTimestamp = timestamp;
    
            //移位并通过或运算拼到一起组成64位的ID
            return ((timestamp - twepoch) << timestampLeftShift) //
                    | (datacenterId << datacenterIdShift) //
                    | (workerId << workerIdShift) //
                    | sequence;
        }
    
        /**
         * 阻塞到下一个毫秒,直到获得新的时间戳
         * @param lastTimestamp 上次生成ID的时间截
         * @return 当前时间戳
         */
        protected long tilNextMillis(long lastTimestamp) {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp) {
                timestamp = timeGen();
            }
            return timestamp;
        }
    
        /**
         * 返回以毫秒为单位的当前时间
         * @return 当前时间(毫秒)
         */
        protected long timeGen() {
            return System.currentTimeMillis();
        }
    
        //==============================Test=============================================
        /** 测试 */
        public static void main(String[] args) {
            SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
            for (int i = 0; i < 10; i++) {
                long id = idWorker.nextId();
                System.out.println(Long.toBinaryString(id));
                System.out.println(id);
            }
        }
    }

    代码简单,但是在分布式系统使用的时候有一些问题:

    1. 不同服务器如何使用不同workId,datacenterId?

    2. 该类设置为单例初始化?

    解决办法如下:

    1. 该微服务启动的时候,workId和datacenterId作为参数传入

    2. 使用Component注解,将SnowflakeIdWorker类设为单例初始化

    具体代码如下:

    package com.cnblogs;
    
    import lombok.extern.slf4j.Slf4j;
    import org.apache.commons.lang3.exception.ExceptionUtils;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.beans.factory.annotation.Value;
    import org.springframework.data.redis.core.RedisTemplate;
    import org.springframework.data.redis.core.StringRedisTemplate;
    import org.springframework.data.redis.core.ValueOperations;
    import org.springframework.data.redis.serializer.StringRedisSerializer;
    import org.springframework.stereotype.Component;
    import tech.fullink.eaglehorn.lzfentrance.util.SnowflakeIdWorker;
    
    import javax.annotation.PostConstruct;
    import java.util.Set;
    import java.util.concurrent.TimeUnit;
    
    /**
     * @author
     * Date: 2018/10/26
     * Time: 17:00:35
     */
    @Slf4j
    @Component
    public class SnowflakeComponent {
        @Value("${server.datacenterId}")
        private long datacenterId;
    
        @Value("${server.workId}")
        private long workId;
    
    
        private static volatile SnowflakeIdWorker instance;
    
        public SnowflakeIdWorker getInstance() {
            if (instance == null) {
                synchronized (SnowflakeIdWorker.class) {
                    if (instance == null) {
                        log.info("when instance, workId = {}, datacenterId = {}", workId, datacenterId);
                        instance = new SnowflakeIdWorker(workId, datacenterId);
                    }
                }
            }
            return instance;
        }
    }

    调用方代码:

    package com.cnflogs;
    
    import lombok.extern.slf4j.Slf4j;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.web.bind.annotation.RequestMapping;
    import org.springframework.web.bind.annotation.RequestMethod;
    import org.springframework.web.bind.annotation.RestController;
    import com.cnflogs.SnowflakeComponent;
    
    /**
     * @author
     */
    @Slf4j
    @RestController
    public class TestController {
    
    
        @Autowired
        private SnowflakeComponent snowflakeComponent;
    
        /**
         * 获取订单号
         *
         * @return
         */
        @RequestMapping(value = "order/no", method = RequestMethod.GET)
        long getOrderNo() {
            return snowflakeComponent.getInstance().nextId();
        }
    }

    我们用的是spring boot,对应的配置文件bootstrap.yml配置如下:注意要传递的参数配置一定要放在bootstrap.yml里面,而不是application.yml

    ###################### server info #####################
    server:
      port: 10000
      ssl:
        enabled: false
      error:
        whitelabel:
          enabled: false
      workId: 0
      datacenterId: 0 #雪花算法的数据中心id,在java 启动命令中定义,四台为0,1,2,3
    
    spring:
      application:
        name:test
     

    启动方式:

     java -jar -Xms256m -Xmx512m -Dserver.workId=1 -Dserver.datacenterId=1 /home/admin/jars/test.jar 

    不同的服务器 -Dserver.workId -Dserver.datacenterId设置为不同的值。

    这样就能正常使用了。

  • 相关阅读:
    Effective Java 19 Use interfaces only to define types
    Effective Java 18 Prefer interfaces to abstract classes
    Effective Java 17 Design and document for inheritance or else prohibit it
    Effective Java 16 Favor composition over inheritance
    Effective Java 15 Minimize mutability
    Effective Java 14 In public classes, use accessor methods, not public fields
    Effective Java 13 Minimize the accessibility of classes and members
    Effective Java 12 Consider implementing Comparable
    sencha touch SortableList 的使用
    sencha touch dataview 中添加 button 等复杂布局并添加监听事件
  • 原文地址:https://www.cnblogs.com/cs99lzzs/p/9869414.html
Copyright © 2011-2022 走看看