给一个n*n的矩阵A,然后求S=A + A^2 + A^3 + ..+ A^k.
思路:
矩阵快速幂,这个题目挺新颖的,以往的矩阵快速幂都是退出公式,然后构造矩阵,这个比较特别,直接上子矩阵吧
A 1 平方后得到 A^2 1+A 三次方 A^3 1+A+A^2
0 1 0 1 0 1 ...这样就行了,
还有注意这个是矩阵套矩阵,然后就是快速幂了,比较容易实现,有一点要注意,
大矩阵的单位矩阵只有对角线才是单位小矩阵,还有一个地方,就是最后我们要在大矩阵的1 2 位置减去单位矩阵,这个减去单位矩阵后如果比0小怎么办,我的处理方法是比0小就再加上余数。
#include<stdio.h>
#include<string.h>
typedef struct
{
int mat[32][32];
}M;
typedef struct
{
M MAT[3][3];
}MM;
int n ,MOD;
M matM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= n ;k ++)
for(int i = 1 ;i <= n ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= n ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
}
M addM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= n ;i ++)
for(int j = 1 ;j <= n ;j ++)
c.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % MOD;
return c;
}
MM matMM(MM a ,MM b)
{
MM c;
for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= n ;k ++)
for(int l = 1 ;l <= n ;l ++)
c.MAT[i][j].mat[k][l] = 0;
for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= 2 ;k ++)
c.MAT[i][j] = addM(c.MAT[i][j] ,matM(a.MAT[i][k] ,b.MAT[k][j]));
return c;
}
MM quickMM(MM a ,int b)
{
MM c;
for(int i = 1 ;i <= 2 ;i ++)
for(int j = 1 ;j <= 2 ;j ++)
for(int k = 1 ;k <= n ;k ++)
for(int l = 1 ;l <= n ;l ++)
c.MAT[i][j].mat[k][l] = 0;
for(int k = 1 ;k <= n ;k ++)
c.MAT[1][1].mat[k][k] = c.MAT[2][2].mat[k][k] = 1;
while(b)
{
if(b & 1) c = matMM(c ,a);
a = matMM(a ,a);
b >>= 1;
}
return c;
}
int main ()
{
int i ,j ,b;
MM A;
while(~scanf("%d %d %d" ,&n ,&b ,&MOD))
{
//MOD = 10000000;
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= n ;j ++)
{
scanf("%d" ,&A.MAT[1][1].mat[i][j]);
A.MAT[2][1].mat[i][j] = 0;
if(i == j)
A.MAT[1][2].mat[i][j] = A.MAT[2][2].mat[i][j] = 1;
else A.MAT[1][2].mat[i][j] = A.MAT[2][2].mat[i][j] = 0;
}
MM ans = quickMM(A ,b + 1);
for(int i = 1 ;i <= n ;i ++)
for(int j = 1 ;j <= n ;j ++)
{
if(i == j) ans.MAT[1][2].mat[i][j] --;
if(ans.MAT[1][2].mat[i][j] < 0) ans.MAT[1][2].mat[i][j] += MOD;
if(j == n) printf("%d
",ans.MAT[1][2].mat[i][j]);
else printf("%d " ,ans.MAT[1][2].mat[i][j]);
}
}
return 0;
}