Matrix Power Series
时间限制:1000 ms | 内存限制:65535 KB
难度:4
- 描述
- Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
- 输入
- The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10^9) and m (m < 10^4). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
- 输出
- Output the elements of S modulo m in the same way as A is given.
- 样例输入
-
2 2 4 0 1 1 1
- 样例输出
-
1 2 2 3
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1000000; const int moder = 1000000; const int N=61; int c[N][N],a[N][N],b[N][N],n,mo; void mult(int x[N][N],int y[N][N])//x = x*y { int i,j,k; for (i=1;i<=n;i++) for (j=1;j<=n;j++) { c[i][j]=0; for (k=1;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo; } for (i=1;i<=n;i++) for (j=1;j<=n;j++) x[i][j]=c[i][j]; } int main() { int m,i,j; scanf("%d%d%d",&n,&m,&mo); for (i=1;i<=n;i++) { for (j=1;j<=n;j++) scanf("%d",&a[i][j]); a[i][i+n]=a[i+n][i+n]=b[i][i]=b[i+n][i+n]=1; //b单位矩阵,a为所求的基础矩阵 } n*=2; m++; while(m>0) { if (m%2) mult(b,a); m/=2; mult(a,a); } n/=2; for (i=1;i<=n;i++) b[i][i+n]--; for (i=1;i<=n;i++) { for (j=1;j<n;j++) printf("%d ",b[i][j+n]); printf("%d ",b[i][j+n]); } return 0; }
网上看了许多快速幂的写法,感觉都很麻烦,只有这个写的很通俗易懂
但题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂
那么我们可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵
我们将 S 取幂,会发现一个特性
Sk 右上角那一块不正是我们要求的 A+A2+...+Ak 吗?
于是我们构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵
转自 https://www.cnblogs.com/hadilo/p/5903514.html