zoukankan      html  css  js  c++  java
  • python实现Hbase

    1. 下载thrift

      作用:翻译python语言为hbase语言的工具

    2. 运行时先启动hbase 再启动thrift,最后在pycharm中通过happybase包连接hbase

      在hbase目录下分别运行下面命令行:

      start-hbase.sh
      hbase thrift -p 9090 start

    3.hbase操作

    1)建立连接

    import happybase
    
    connection = happybase.Connection('10.1.13.111')

    当connection被创建的时候,默认自动与Hbase建立socket连接的。

    若不想自动与Hbase建立socket连接,可以将autoconnect参数设置为False

    connection = happybase.Connection('10.1.13.111', autoconnect=False)

    然后手动与Hbase建立socket连接

    connection.open()

    (2)连接建立好之后查看可以使用的table

    print connection.tables()

     因为还没有创建table,所以返回结果是 []

    (3)创建一个table

    connection.create_table(
        'my_table',
        {
            'cf1': dict(max_versions=10),
            'cf2': dict(max_versions=1, block_cache_enabled=False),
            'cf3': dict(),  # use defaults
        }
    )

    此时,我们再通过connection.tables()查看可以使用的table,结果为['my_table']

    创建的table即my_table包含3个列族:cf1、cf2、cf3

    (4)获取一个table实例

    一个table被创建好之后,要想对其进行操作,首先要获取这个table实例

    table = connection.table('my_table')

    (5)使用table的命名空间

            因为一个Hbase会被多个项目共同使用,所以就会导致table的命名冲突,为了解决这个问题,可以在创建table的时候,手动加上项目的名字作为table名字的前缀,例如myproject_xyz。

            但是这样做比较麻烦,happybase帮我们做好了工作,我们可以在与Hbase建立连接的时候,通过设置table_prefix参数来实现这个功能

    connection = happybase.Connection('10.1.13.111', table_prefix='myproject')

        此时connection.tables()只会返回包含在该命名空间里的tables,且返回的tables的名字会以简单的形式显示,即不包含前缀。

    (6)存储数据:Hbase里 存储的数据都是原始的字节字符串

    cloth_data = {'cf1:content': u'牛仔裤', 'cf1:price': '299', 'cf1:rating': '98%'}
    hat_data = {'cf1:content': u'鸭舌帽', 'cf1:price': '88', 'cf1:rating': '99%'}
    shoe_data = {'cf1:content': u'耐克', 'cf1:price': '988', 'cf1:rating': '100%'}
    author_data = {'cf2:name': u'LiuLin', 'cf2:date': '2017-03-09'}
    
    table.put(row='www.test1.com', data=cloth_data)
    table.put(row='www.test2.com', data=hat_data)
    table.put(row='www.test3.com', data=shoe_data)
    table.put(row='www.test4.com', data=author_data)

    使用put一次只能存储一行数据

    如果row key已经存在,则变成了修改数据

    (7)更好的存储数据

    table.put()方法会立即给Hbase Thrift server发送一条命令。其实这种方法的效率并不高,我们可以使用更高效的table.batch()方法。

    # 使用batch一次插入多行数据
    bat = table.batch()
    bat.put('www.test5.com', {'cf1:price': 999, 'cf2:title': 'Hello Python', 'cf2:length': 34, 'cf3:code': 'A43'})
    bat.put('www.test6.com', {'cf1:content': u'剃须刀', 'cf1:price': 168, 'cf1:rating': '97%'})
    bat.put('www.test7.com', {'cf3:function': 'print'})
    bat.send()

    更有用的方法是使用上下文管理器来管理batch,这样就不用手动发送数据了,即不再需要bat.send()

    # 使用with来管理batch
    with table.batch() as bat:
        bat.put('www.test5.com', {'cf1:price': '999', 'cf2:title': 'Hello Python', 'cf2:length': '34', 'cf3:code': 'A43'})
        bat.put('www.test6.com', {'cf1:content': u'剃须刀', 'cf1:price': '168', 'cf1:rating': '97%'})
        bat.put('www.test7.com', {'cf3:function': 'print'})

    还可以删除数据

    # 在batch中删除数据
    with table.batch() as bat:
        bat.put('www.test5.com', {'cf1:price': '999', 'cf2:title': 'Hello Python', 'cf2:length': '34', 'cf3:code': 'A43'})
        bat.put('www.test6.com', {'cf1:content': u'剃须刀', 'cf1:price': '168', 'cf1:rating': '97%'})
        bat.put('www.test7.com', {'cf3:function': 'print'})
        bat.delete('www.test1.com')

     batch将数据保存在内存中,知道数据被send,第一种send数据的方法是显示地发送,即bat.send(),第二种send数据的方法是到达with上下文管理器的结尾自动发送。这样就存在一个问题,万一数据量很大,就会占用太多的内存。所以我们在使用table.batch()的时候要通过batch_size参数来设置batch的大小

    # 通过batch_size参数来设置batch的大小
    with table.batch(batch_size=10) as bat:
        for i in range(16):
            bat.put('www.test{}.com'.format(i), {'cf1:price': '{}'.format(i)})

    (8)扫描一个table里的数据

    # 全局扫描一个table
    for key, value in table.scan():
        print key, value

    结果如下:

    这种全局扫描一个表格其实代价是很大的,尤其是当数据量很大的时候。我们可以通过设置开始的row key 或结束的row key或者同时设置开始和结束的row key来进行局部查询

    # 通过row_start参数来设置开始扫描的row key
    for key, value in table.scan(row_start='www.test2.com'):
        print key, value
    # 通过row_stop参数来设置结束扫描的row key
    for key, value in table.scan(row_stop='www.test3.com'):
        print key, value
    # 通过row_start和row_stop参数来设置开始和结束扫描的row key
    for key, value in table.scan(row_start='www.test2.com', row_stop='www.test3.com'):
        print key, value

    另外,还可以通过设置row key的前缀来进行局部扫描

    # 通过row_prefix参数来设置需要扫描的row key
    for key, value in table.scan(row_prefix='www.test'):
        print key, value

    (9)检索数据

    # 检索一行数据
    row = table.row('www.test4.com')
    print row

    直接返回该row key的值(以字典的形式),结果为:

    {'cf2:name': 'LiuLin', 'cf2:date': '2017-03-09'}

    # 检索多行数据
    rows = table.rows(['www.test1.com', 'www.test4.com'])
    print rows

    返回的是一个list,list的一个元素是一个tuple,tuple的第一个元素是row key,第二个元素是row key的值

    如果想使检索多行数据即table.rows()返回的结果是一个字典,可以这样处理

    # 检索多行数据,返回字典
    rows_dict = dict(table.rows(['www.test1.com', 'www.test4.com']))
    print rows_dict

    如果想使table.rows()返回的结果是一个有序字典,即OrderedDict,可以这样处理

    # 检索多行数据,返回有序字典
    from collection import OrderedDict
    rows_ordered_dict = OrderedDict(table.rows(['www.test1.com', 'www.test4.com']))
    print rows_ordered_dict

    (10)更好地检索数据

    # 通过指定列族来检索数据
    row = table.row('www.test1.com', columns=['cf1'])
    print row
    # 通过指定列族中的列来检索数据
    row = table.row('www.test1.com', columns=['cf1:price', 'cf1:rating'])
    print row
    print row['cf1:price']

    在Hbase里,每一个cell都有一个时间戳timestamp,可以通过时间戳来检索数据

    # 通过指定时间戳来检索数据,时间戳必须是整数
    row = table.row('www.test1.com', timestamp=1489070666)
    print row

    默认情况下,返回的数据并不会包含时间戳,如果你想获取时间戳,这样就可以了

    # 在返回的数据里面包含时间戳
    row = table.row(row='www.test1.com', columns=['cf1:rating', 'cf1:price'], include_timestamp=True)
    print row

    对于同一个单元的值,Hbase存储了多个版本,在创建表的时候可以通过max_versions参数来设置一个列族的最大版本号,如果想检索某一cell所有的版本,可以这样

    # 检索某一个cell所有的版本
    cells = table.cells(b'www.test1.com', column='cf1:price')
    print cells

    也可以通过version参数来指定需要检索的前n个版本,如下

    # 通过设置version参数来检索前n个版本
    cells = table.cells(b'www.test1.com', column='cf1:price', versions=3)
    print cells

    (11)删除数据

    # 删除一整行数据
    table.delete('www.test4.com')
    # 删除一个列族的数据
    table.delete('www.test2.com', columns=['cf1'])
    # 删除一个列族中几个列的数据
    table.delete('www.test2.com', columns=['cf1:name', 'cf1:price'])

    (12)使用连接池

    Hbase自带有线程安全的连接池,踏允许多个线程共享和重用已经打开的连接。这对于多线程的应用是非常有用的。当一个线程申请一个连接,它将获得一个租赁凭证,在此期间,这个线程单独享有这个连接。当这个线程使用完该连接之后,它将该连接归还给连接池以便其他的线程可以使用

    # 创建连接,通过参数size来设置连接池中连接的个数
    pool = happybase.ConnectionPool(size=3, host='10.1.13.111', table_prefix='myProject')
    # 获取连接
    with pool.connection() as connection:
        print connection.tables()
  • 相关阅读:
    国内大学毕业论文LaTeX模板集合
    LATEX论文排版学习资源汇总
    论文神器Latex30分钟快速入门教程-只需9步向学神看齐
    smartdraw2013破解方法
    科研常用的软件
    推荐科研软件
    斯坦福大学科研软件
    【LaTeX】E喵的LaTeX新手入门教程(6)中文
    【LaTeX】E喵的LaTeX新手入门教程(5)参考文献、文档组织
    【LaTeX】E喵的LaTeX新手入门教程(4)图表
  • 原文地址:https://www.cnblogs.com/cxhzy/p/10557980.html
Copyright © 2011-2022 走看看