zoukankan      html  css  js  c++  java
  • Ayoub and Lost Array

    C. Ayoub and Lost Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Ayoub had an array aa of integers of size nn and this array had two interesting properties:

    • All the integers in the array were between ll and rr (inclusive).
    • The sum of all the elements was divisible by 33.

    Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

    Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

    Input

    The first and only line contains three integers nn, ll and rr (1n2105,1lr1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

    Output

    Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

    Examples
    input
    Copy
    2 1 3
    
    output
    Copy
    3
    
    input
    Copy
    3 2 2
    
    output
    Copy
    1
    
    input
    Copy
    9 9 99
    
    output
    Copy
    711426616
    
    Note

    In the first example, the possible arrays are : [1,2],[2,1],[3,3][1,2],[2,1],[3,3].

    In the second example, the only possible array is [2,2,2][2,2,2].

    #include<bits/stdc++.h>
    #define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
    #define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
    #define PER(i, a, b) for(int i = (a); i >= (b); -- i)
    using namespace std;
    const int maxn=2e5+5;
    const int mod=1e9+7;
    template <class T>
    inline void rd(T &ret){
        char c;
        ret = 0;
        while ((c = getchar()) < '0' || c > '9');
        while (c >= '0' && c <= '9'){
            ret = ret * 10 + (c - '0'), c = getchar();
        }
    }
    int n,l,r;
    long long dp[maxn][5];
    int main()
    {
        rd(n),rd(l),rd(r);
        int u=r/3-(l-1)/3;
        int v=(r+2)/3-(l-1+2)/3;
        int w=(r+1)/3-(l-1+1)/3;
        dp[1][0]=u,dp[1][1]=v,dp[1][2]=w;
        REP(i,2,n){
            dp[i][0]=(dp[i-1][2]*v%mod+dp[i-1][1]*w%mod+dp[i-1][0]*u%mod)%mod;
            dp[i][1]=(dp[i-1][0]*v%mod+dp[i-1][1]*u%mod+dp[i-1][2]*w%mod)%mod;
            dp[i][2]=(dp[i-1][0]*w%mod+dp[i-1][1]*v%mod+dp[i-1][2]*u%mod)%mod;
        }
        cout<<dp[n][0]<<endl;
    }
  • 相关阅读:
    2018ACM上海大都会赛 F Color it【基础的扫描线】
    2018大都会赛 A Fruit Ninja【随机数】
    两个数互质的概率
    【shell脚本学习-3】
    【mysql学习-1】
    【HCNE题型自我考究】
    【为系统营造的一个安全的环境】
    【nginx下对服务器脚本php的支持】
    【linux基于Postfix和Dovecot邮件系统的搭建】
    不同状态的动态路由协议对比
  • 原文地址:https://www.cnblogs.com/czy-power/p/10474274.html
Copyright © 2011-2022 走看看