zoukankan      html  css  js  c++  java
  • Ayoub and Lost Array

    C. Ayoub and Lost Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Ayoub had an array aa of integers of size nn and this array had two interesting properties:

    • All the integers in the array were between ll and rr (inclusive).
    • The sum of all the elements was divisible by 33.

    Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

    Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

    Input

    The first and only line contains three integers nn, ll and rr (1n2105,1lr1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

    Output

    Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

    Examples
    input
    Copy
    2 1 3
    
    output
    Copy
    3
    
    input
    Copy
    3 2 2
    
    output
    Copy
    1
    
    input
    Copy
    9 9 99
    
    output
    Copy
    711426616
    
    Note

    In the first example, the possible arrays are : [1,2],[2,1],[3,3][1,2],[2,1],[3,3].

    In the second example, the only possible array is [2,2,2][2,2,2].

    #include<bits/stdc++.h>
    #define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
    #define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
    #define PER(i, a, b) for(int i = (a); i >= (b); -- i)
    using namespace std;
    const int maxn=2e5+5;
    const int mod=1e9+7;
    template <class T>
    inline void rd(T &ret){
        char c;
        ret = 0;
        while ((c = getchar()) < '0' || c > '9');
        while (c >= '0' && c <= '9'){
            ret = ret * 10 + (c - '0'), c = getchar();
        }
    }
    int n,l,r;
    long long dp[maxn][5];
    int main()
    {
        rd(n),rd(l),rd(r);
        int u=r/3-(l-1)/3;
        int v=(r+2)/3-(l-1+2)/3;
        int w=(r+1)/3-(l-1+1)/3;
        dp[1][0]=u,dp[1][1]=v,dp[1][2]=w;
        REP(i,2,n){
            dp[i][0]=(dp[i-1][2]*v%mod+dp[i-1][1]*w%mod+dp[i-1][0]*u%mod)%mod;
            dp[i][1]=(dp[i-1][0]*v%mod+dp[i-1][1]*u%mod+dp[i-1][2]*w%mod)%mod;
            dp[i][2]=(dp[i-1][0]*w%mod+dp[i-1][1]*v%mod+dp[i-1][2]*u%mod)%mod;
        }
        cout<<dp[n][0]<<endl;
    }
  • 相关阅读:
    Web存储
    JavaScript模块化
    jQuery挖源码——事件绑定
    观察者模式——JavaScript
    Node.js之网络小爬虫
    ECMAScript的严格模式
    JavaScript和jQuery的事件
    认识Ajax
    Redis之intset数据结构
    Redis之Hash数据结构
  • 原文地址:https://www.cnblogs.com/czy-power/p/10474274.html
Copyright © 2011-2022 走看看