zoukankan      html  css  js  c++  java
  • HDU 4135 Co-prime(容斥原理)

    Co-prime

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3313    Accepted Submission(s): 1286


    Problem Description
    Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
    Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
     

    Input
    The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
     

    Output
    For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
     

    Sample Input
    2 1 10 2 3 15 5
     

    Sample Output
    Case #1: 5 Case #2: 10
    求在n在a~b之间的和n互质的个数
    容斥原理模板题
    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <stdlib.h>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    typedef long long int LL;
    const LL INF=(LL)1<<62;
    #define MAX 1000000
    LL prime[MAX+5];
    LL sprime[MAX+5];
    LL q[MAX+5];
    bool check[MAX+5];
    LL n,a,b,cnt;
    void eular()
    {
        memset(check,false,sizeof(check));
        int tot=0;
        for(LL i=2;i<MAX+5;i++)
        {
            if(!check[i])
                prime[tot++]=i;
            for(int j=0;j<tot;j++)
            {
                if(i*prime[j]>MAX+5) break;
                 check[i*prime[j]]=true;
                if(i%prime[j]==0) break;
            }
        }
    }
    void Divide(LL n)
    {
        cnt=0;
        LL t=(LL)sqrt(1.0*n);
        for(LL i=0;prime[i]<=t;i++)
        {
            if(n%prime[i]==0)
            {
                sprime[cnt++]=prime[i];
                while(n%prime[i]==0)
                    n/=prime[i];
            }
        }
        if(n>1)
            sprime[cnt++]=n;
    }
    LL Ex(LL n)
    {
        LL sum=0,t=1;
        q[0]=-1;
        for(LL i=0;i<cnt;i++)
        {
            LL x=t;
            for(LL j=0;j<x;j++)
            {
                q[t]=q[j]*sprime[i]*(-1);
                t++;
            }
        }
        for(LL i=1;i<t;i++)
            sum+=n/q[i];
        return sum;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        eular();
        int cas=0;
        while(t--)
        {
            scanf("%lld%lld%lld",&a,&b,&n);
            Divide(n);
            printf("Case #%d: %lld
    ",++cas,(b-Ex(b)-(a-1-Ex(a-1))));
        }
        return 0;
    }
    



  • 相关阅读:
    Python中的traceback模块
    硬链接和软连接的区别
    Python中的fileinput模块和tempfile模块
    SQL Relay
    使用python+cron对php状态进行定时监控
    给想学习asp小朋友的建议
    emerg]: bind() to 0.0.0.0:80 failed (98: Address already in use)
    python非贪婪、多行匹配正则表达式例子[转载]
    python中eval, exec, execfile,和compile [转载]
    url extracting 未测试
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228664.html
Copyright © 2011-2022 走看看