zoukankan      html  css  js  c++  java
  • 小顶堆第二弹-----堆降序排序(C语言非递归)

      现在po一下C语言版本的,留作以后接口使用.
    1
    #include <stdio.h> 2 #include <stdlib.h> 3 4 #define HEAP_SIZE 100 5 #define HEAP_FULL_VALUE -100 6 7 #if 0 8 /*小顶堆存储结构*/ 9 typedef struct small_heap 10 { 11 int data[HEAP_SIZE]; 12 int num; 13 }SMALL_HEAP; 14 #endif 15 16 17 /* 18 * name: heap_Swap 19 * 20 * purpose: 21 * swap two value of heap 22 */ 23 static void heap_Swap(int heap[],int index_src,int index_dst) 24 { 25 int tmp = heap[index_src]; 26 27 heap[index_src] = heap[index_dst]; 28 heap[index_dst] = tmp; 29 } 30 31 /* 32 * name: heap_Up 33 * 34 * purpose: 35 * move up value of the index position to adjust heap struct 36 */ 37 static void heap_Up(int heap[],int index) 38 { 39 int parent = index / 2; 40 41 while(parent >= 1) 42 { 43 if(heap[index] < heap[parent]) 44 { 45 heap_Swap(heap,index,parent); 46 index = parent; 47 } 48 else 49 { 50 break; 51 } 52 } 53 } 54 55 /* 56 * name: heap_Down 57 * 58 * purpose: 59 * move down value of the index position to adjust heap struct 60 */ 61 static void heap_Down(int heap[],int index,int heap_data_num) 62 { 63 if(index * 2 > heap_data_num) 64 {//leaf node can not move down 65 return; 66 } 67 68 while(index * 2 <= heap_data_num ) 69 { 70 int child = index * 2; // left child 71 72 if(child > heap_data_num) 73 { 74 return; 75 } 76 77 if(index * 2 < heap_data_num) 78 {//the node have two child 79 if(heap[child + 1] < heap[child]) 80 { 81 child += 1; //right child is smaller update 82 } 83 84 } 85 86 if(heap[child] < heap[index]) 87 {//the child samller than index swap value 88 heap_Swap(heap,index,child); 89 index = child; 90 } 91 else 92 { 93 break; 94 } 95 } 96 } 97 98 /* 99 * name: heap_Insert 100 * 101 * purpose: 102 * insert a value into heap and ajust heap struct 103 */ 104 void heap_Insert(int heap[],int *heap_data_num,int value) 105 { 106 if(*heap_data_num == 0) 107 { 108 heap[0] = HEAP_FULL_VALUE; //data 0 do not save in the heap 109 } 110 111 (*heap_data_num)++; //update heap size 112 heap[*heap_data_num] = value; //add value to heap 113 114 heap_Up(heap,*heap_data_num); //adjust heap struct 115 } 116 117 /* 118 * name: heap_Delete 119 * 120 * purpose: 121 * delete a value from heap 122 */ 123 void heap_Delete(int heap[],int *heap_data_num,int value) 124 { 125 int index; 126 127 for(index = 1; index <= *heap_data_num; index++) 128 { 129 if(heap[index] == value) 130 { 131 break; 132 } 133 } 134 135 if(index > *heap_data_num) 136 {//the value is not exist 137 return; 138 } 139 140 heap[index] = heap[*heap_data_num]; //set the index value as final value 141 142 (*heap_data_num)--;//the final value is not as the heap 143 144 heap_Down(heap,index,*heap_data_num); //move down 145 146 int parent = index / 2; 147 if(parent > 0 && heap[index] < heap[parent]) 148 {//ajust to the special situation 149 heap_Up(heap,index); 150 } 151 152 heap[*heap_data_num + 1] = HEAP_FULL_VALUE; //delete final data 153 } 154 155 /* 156 * name:heap_Init_Adjust 157 * 158 * purpose: 159 * to adjust the init heap 160 * time complex is O(n) better than insert value one by one 161 * 162 * explain: 163 * because the heap is a complete binary tree so just first half of heap data is not leaf node 164 * 165 */ 166 void heap_Init_Adjust(int heap[],int heap_data_num) 167 { 168 int index; 169 170 for(index = heap_data_num / 2; index >= 1; index--) 171 { 172 heap_Down(heap,index,heap_data_num); //adjust the heap struct at index position 173 } 174 } 175 176 void heap_Print(int heap[],int heap_data_num); 177 /* 178 * name: heap_Sort 179 * 180 * purpose: 181 * to sort the heap to a descending order 182 */ 183 void heap_Sort(int heap[],int heap_data_num) 184 { 185 int index; 186 187 for(index = heap_data_num; index > 1; index--) 188 { 189 heap_Swap(heap,1,index); //swap the heap top with the final value 190 heap_Down(heap,1,index - 1); //to ajust the heap struct afert sort one value 191 //heap_Print(heap,heap_data_num); 192 } 193 } 194 195 196 /* 197 * name: heap_Print 198 * 199 * purpose: 200 * print heap data as commen order 201 */ 202 void heap_Print(int heap[],int heap_data_num) 203 { 204 int i; 205 for(i = 1; i <= heap_data_num; i++) 206 { 207 printf("%d ",heap[i]); 208 } 209 210 printf(" "); 211 } 212 213 214 int main() 215 { 216 int heap[HEAP_SIZE]; 217 int i,heap_data_num = 0; 218 219 for(i = 0; i < heap_data_num; i++) 220 { 221 heap[i] = HEAP_FULL_VALUE; 222 } 223 224 #if 1 225 heap_Insert(heap,&heap_data_num,1); 226 heap_Insert(heap,&heap_data_num,3); 227 heap_Insert(heap,&heap_data_num,4); 228 heap_Insert(heap,&heap_data_num,5); 229 heap_Insert(heap,&heap_data_num,8); 230 heap_Insert(heap,&heap_data_num,2); 231 heap_Insert(heap,&heap_data_num,7); 232 heap_Insert(heap,&heap_data_num,6); 233 234 heap_Print(heap,heap_data_num); 235 236 heap_Sort(heap,heap_data_num); 237 heap_Print(heap,heap_data_num); 238 239 heap_Init_Adjust(heap,heap_data_num); 240 heap_Print(heap,heap_data_num); 241 242 heap_Sort(heap,heap_data_num); 243 heap_Print(heap,heap_data_num); 244 245 heap_Delete(heap,&heap_data_num,2); 246 heap_Print(heap,heap_data_num); 247 heap_Delete(heap,&heap_data_num,1); 248 heap_Print(heap,heap_data_num); 249 250 heap_Sort(heap,heap_data_num); 251 heap_Print(heap,heap_data_num); 252 253 heap_Init_Adjust(heap,heap_data_num); 254 heap_Print(heap,heap_data_num); 255 256 #endif 257 258 #if 0 259 heap_Insert(heap,&heap_data_num,1); 260 heap_Insert(heap,&heap_data_num,3); 261 heap_Insert(heap,&heap_data_num,11); 262 heap_Insert(heap,&heap_data_num,5); 263 heap_Insert(heap,&heap_data_num,4); 264 heap_Insert(heap,&heap_data_num,8); 265 heap_Insert(heap,&heap_data_num,7); 266 heap_Insert(heap,&heap_data_num,6); 267 268 heap_Print(heap,heap_data_num); 269 270 heap_Delete(heap,&heap_data_num,8); 271 272 heap_Print(heap,heap_data_num); 273 #endif 274 275 }
  • 相关阅读:
    [Tip: VS debugging]F5 VS Ctrl +F5
    C#: boxing and unboxing
    [Tip: check overflow/underflow C#]
    C# floating Point types
    UVa 103 Stacking Box(记忆化搜索)
    POJ 3321 apple tree(树形数组)
    UVa 116 Unidirectional TSP(简单旅行商DP)
    UVa 562 Dividing coins(简单DP)
    UVa 10003 Cutting Sticks(区间DP)
    UVa 348 Optimal Array Multiplication Sequence(链式DP/区间DP)
  • 原文地址:https://www.cnblogs.com/daimadebanyungong/p/4973900.html
Copyright © 2011-2022 走看看