原理参考《算法导论》,仅给出代码。
声明一个mergeable_heap类
class mergeable_heap {//由多棵二项树构成 public: typedef struct _HeapNode{ _HeapNode():key(0), degree(0), p(NULL), c(NULL), sibling(NULL){} _HeapNode(int _key, int _degree, _HeapNode *_p, _HeapNode *_c, _HeapNode *_sibling): key(_key), degree(_degree), p(_p), c(_c), sibling(_sibling){} int key; int degree; _HeapNode *p, *c, *sibling;//父结点,左子结点,右子结点 }HeapNode, *pHeapNode; typedef struct _Heapinfo { _Heapinfo() :H(NULL) {} _Heapinfo(HeapNode *_H) :H(_H) {} HeapNode *H; }Heapinfo, *pHeapinfo; mergeable_heap(){ heapInfo = new Heapinfo(); } ~mergeable_heap() { heap_empty(); delete heapInfo; if (_CrtDumpMemoryLeaks()) printf("内存泄漏,请使用F5 debug模式查看! ");//内存泄漏检测 else printf("无内存泄漏! "); } HeapNode *heap_min(Heapinfo *pInfo); HeapNode *heap_max(Heapinfo *pInfo); HeapNode *heap_search(Heapinfo *pInfo, int k); HeapNode *heap_union(Heapinfo *pInfo1, Heapinfo *pInfo2); HeapNode *heap_merge(Heapinfo *pInfo1, Heapinfo *pInfo2); void heap_link(HeapNode *y, HeapNode *z); void heap_insert(Heapinfo *pInfo, int k); void heap_print(Heapinfo *pInfo); Heapinfo *heap_root();//返回引用,解除private属性 int extract_min(); int extract_max(); HeapNode *heap_reverse(HeapNode *H); HeapNode *heap_decrease(HeapNode *x, int k); HeapNode * heap_increase(HeapNode *x, int k); void heap_delete(Heapinfo *pInfo, int k); void heap_empty(); private: Heapinfo *heapInfo;//包含了所有二项树的根 };
对应成员函数实现
heap_min函数,找出堆中最小结点
typename mergeable_heap::HeapNode *mergeable_heap::heap_min(typename mergeable_heap::Heapinfo *pInfo) { HeapNode *x, *y; if (pInfo == NULL) return NULL; x = y = pInfo->H; while ((x = x->sibling)) { if (x->key < y->key) y = x; } return y; }
heap_max函数,找出堆中最大结点
typename mergeable_heap::HeapNode *mergeable_heap::heap_max(typename mergeable_heap::Heapinfo *pInfo) { HeapNode *x, *y, *z, *H; if (pInfo == NULL) return NULL; z = H = pInfo->H; while (H) { if (H->key > z->key) z = H; x = H->c; while (x) { //输出同一层的 y = x; while (y) { if (y->key > z->key) z = y; y = y->sibling; } x = x->c; } H = H->sibling; } return z; }
heap_search函数,查找对应关键字k的结点
typename mergeable_heap::HeapNode *mergeable_heap::heap_search(typename mergeable_heap::Heapinfo *pInfo, int k) { HeapNode *x, *y, *H; if (pInfo == NULL) return NULL; else if (pInfo->H == NULL) return NULL; H = pInfo->H; while (H) { if (H->key == k) return H; x = H->c; while (x) { //输出同一层的 y = x; while (y) { if (y->key == k) return y; y = y->sibling; } x = x->c; } H = H->sibling; } return NULL; }
heap_union函数,两个堆的合并,原理来自于《算法导论》
typename mergeable_heap::HeapNode *mergeable_heap::heap_union(typename mergeable_heap::Heapinfo *pInfo1, typename mergeable_heap::Heapinfo *pInfo2) { HeapNode *H = heap_merge(pInfo1, pInfo2); HeapNode *prev, *next, *x; delete pInfo1; delete pInfo2; if (H == NULL) return NULL; prev = NULL; x = H; next = x->sibling; while (next) { if (x->degree != next->degree || (next->sibling && next->sibling->degree == x->degree)) {//case 1, 2 prev = x; x = next; } else if (x->key <= next->key) {//case 3 x->sibling = next->sibling; heap_link(next, x); } else {//case 4 if (prev == NULL) H = next; else prev->sibling = next; heap_link(x, next); x = next; } next = x->sibling; } return H; }
两个对应的辅助函数heap_merge, heap_link
typename mergeable_heap::HeapNode * mergeable_heap::heap_merge(typename mergeable_heap::Heapinfo *pInfo1, typename mergeable_heap::Heapinfo *pInfo2) { HeapNode *H = NULL, *x, *r = NULL, *H1 = NULL, *H2 = NULL; if (pInfo1 == NULL && pInfo2 == NULL) return NULL; if (pInfo1) H1 = pInfo1->H; if (pInfo2) H2 = pInfo2->H; while (H1 || H2) { if (H2 == NULL || (H1 && H1->degree <= H2->degree)) { x = H1; H1 = H1->sibling; } else { x = H2; H2 = H2->sibling; } //插入到H if (r) r->sibling = x; else H = x; r = x; } if (r) r->sibling = NULL; return H; } void mergeable_heap::heap_link(typename mergeable_heap::HeapNode *y, typename mergeable_heap::HeapNode *z) { y->p = z; y->sibling = z->c; z->c = y; z->degree = z->degree + 1; }
heap_insert函数,插入关键字到堆
void mergeable_heap::heap_insert(typename mergeable_heap::Heapinfo *pInfo, int k) { HeapNode *x; Heapinfo *pNew; if (heap_search(pInfo, k)) //不允许重复插入 return; x = new HeapNode(); x->key = k; pNew = new Heapinfo(x); if (pInfo == heapInfo) heapInfo = new Heapinfo(heap_union(pInfo, pNew)); else { pNew = new Heapinfo(heap_union(pInfo, pNew)); heapInfo = new Heapinfo(heap_union(heapInfo, pNew)); } }
extract_min函数,提取最小结点,并删除之
int mergeable_heap::extract_min() { HeapNode *x, *y; int k; Heapinfo *pNew = NULL; if (heapInfo == NULL) return -1; x = y = heapInfo->H; k = heapInfo->H->key; while (x->sibling) {//找到最小y的前一个结点 if (x->sibling->key < y->key) { y = x;//y是最小结点的前一个结点 k = y->sibling->key; } x = x->sibling; } x = y;//前一个结点 if (y->sibling && y->sibling->key == k) y = y->sibling;//当前最小结点 if (x == y) {//剔除x,修复连接 x = x->sibling; heapInfo->H = x; } else x->sibling = x->sibling->sibling; x = y->c; while (x) {//清理父结点 x->p = NULL; x = x->sibling; } x = heap_reverse(y->c); pNew = new Heapinfo(x); heapInfo = new Heapinfo(heap_union(heapInfo, pNew)); delete y; return k; }
extract_max函数,提取最大结点,并删除之
int mergeable_heap::extract_max() { HeapNode *x = heap_max(heapInfo); int k = x->key; heap_delete(heapInfo, k); return k; }
heap_decrease函数,下降关键字
typename mergeable_heap::HeapNode *mergeable_heap::heap_decrease(typename mergeable_heap::HeapNode *x, int k) { HeapNode *y, *z; if (k >= x->key) return NULL; x->key = k; y = x; z = x->p; while (z && y->key < z->key) { std::swap(y->key, z->key); y = z; z = y->p; } return y; }
heap_increase函数,提升关键字
typename mergeable_heap::HeapNode *mergeable_heap::heap_increase(typename mergeable_heap::HeapNode *x, int k) { HeapNode *y, *z; if (k <= x->key) return NULL; x->key = k; y = x; z = x->c; while (z && y->key > z->key) { std::swap(y->key, z->key); y = z; z = y->c; } return y; }
heap_delete函数,堆思想删除,类似Treap树的删除原理
void mergeable_heap::heap_delete(typename mergeable_heap::Heapinfo *pInfo, int k) { //堆删除思想,原理由heap_decrease和extract_min构成 HeapNode *x, *y, *z; Heapinfo *pNew = NULL; x = heap_search(pInfo, k); if (x == NULL) return; y = x; z = x->p; while (z) {//需要删除的结点上升到根 std::swap(y->key, z->key); y = z; z = y->p; } //定位p结点的前一个结点 x = y;//保留当前结点 y = z = pInfo->H; while (z != x) { y = z;//前驱 z = z->sibling; } x = y;//前一个结点 if (y->sibling && y->sibling->key == k) y = y->sibling;//当前最小结点 if (x == y) {//剔除x,修复连接 x = x->sibling; pInfo->H = x; } else x->sibling = x->sibling->sibling; x = y->c; while (x) {//清理父结点 x->p = NULL; x = x->sibling; } x = heap_reverse(y->c); pNew = new Heapinfo(x); if (pInfo == heapInfo) heapInfo = new Heapinfo(heap_union(pInfo, pNew)); else { pNew = new Heapinfo(heap_union(pInfo, pNew)); heapInfo = new Heapinfo(heap_union(heapInfo, pNew)); } delete y; }
对应的辅助函数heap_reverse,让指定堆倒序
typename mergeable_heap::HeapNode *mergeable_heap::heap_reverse(typename mergeable_heap::HeapNode *H) { HeapNode *x = NULL, *y; if (H == NULL) return NULL; while (H) {//H变为逆序 y = H->sibling; if (x == NULL) H->sibling = NULL; else H->sibling = x; x = H; H = y; } return x; }
heap_empty函数,清理堆
void mergeable_heap::heap_empty() { while (heapInfo && heapInfo->H) { heap_delete(heapInfo, heapInfo->H->key); heap_print(heapInfo); printf(" "); } }
heap_print和heap_root函数
void mergeable_heap::heap_print(typename mergeable_heap::Heapinfo *pInfo) { HeapNode *x, *y, *H; if (pInfo == NULL) return; H = pInfo->H; while (H) { printf("[B%d]%d ", H->degree, H->key); x = H->c; while (x) { //输出同一层的 y = x; while (y) { printf("%d, df=%d %-02s", y->key, y->degree, " "); y = y->sibling; } printf(" "); x = x->c; } H = H->sibling; } } typename mergeable_heap::Heapinfo *mergeable_heap::heap_root() { return heapInfo; }
数据测试
int K[] = { 10,1,12,18,25,6,8,14,29,11,17,38,27 };
Main函数
int main() { //int K[] = { 12,7,25,15,28,33,41 }; int K[] = { 10,1,12,18,25,6,8,14,29,11,17,38,27 }; mergeable_heap heap; for (int i = 0; i < LENGTH(K); i++) heap.heap_insert(heap.heap_root(), K[i]); heap.heap_print(heap.heap_root()); printf(" "); /* //测试heap_delete函数 printf("测试heap_delete函数... "); //for (int i = LENGTH(K) - 1; i >= 0; i--) { for (int i = 0; i < LENGTH(K); i++) { printf("%d deleted ", K[i]); heap.heap_delete(heap.heap_root(), K[i]); heap.heap_print(heap.heap_root()); printf(" "); } */ printf("对象释放... "); return 0; }
结果图
代码均经过测试,结果正确!!!