zoukankan      html  css  js  c++  java
  • 3. 快速排序

      快速排序(Quick Sort)与冒泡排序均为交换类排序。快排是对冒泡排序的一种改进。由于关键字的比较和交换是跳跃进行的,因此,快速排序是一种不稳定的排序方法。

     

    0. 序

    1. 冒泡排序

    2. 快速排序

    2.1 基本思想

    2.2 一趟快速排序(一趟划分)

    2.3 过程

    2.4 实现

    2.5 复杂度分析

    2.5.1 时间复杂度(包含证明)

    2.5.2 空间复杂度

           0. 序

      快速排序算法最早由图灵奖获得者Tony Hoare设计出来的,他在形式化方法理论以及ALGOL60编程语言的发明中都有卓越的贡献,是上世纪最伟大的计算机科学家之一。

      快速排序被列为20世纪十大算法之一。

      1. 冒泡排序

      假设在排序过程中,记录序列R[1...n] 的状态为:

     

      更多的冒泡排序讲解见https://www.cnblogs.com/datamining-bio/p/9715774.html

      2. 快速排序

      快速排序也是通过不断比较和移动交换来实现排序的,只不过它的实现,增大了记录的比较和移动的距离,将关键字较大的记录从前面直接移动到后面,关键字较小的记录从后面直接移动到前面,从而减少了总的比较次数和移动交换次数

      2.1 基本思想

      通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后分别对这两部分继续进行排序,直到整个序列有序。

      2.2 一趟快速排序(一次划分)

      目标:找一个记录,以它的关键字作为“枢纽”,凡其关键字小于枢纽的记录均移动至该记录之前,反之,凡关键字大于枢纽的记录均移动至该记录之后。

     

     

      设 R[s] = 52 为枢纽

      将R[high].key 和枢纽的关键字进行比较,要求R[high].key ≥ 枢纽的关键字

      将R[low].key 和枢纽的关键字进行比价,要求R[low].key ≤ 枢纽的关键字

     

      可见,经过“一次划分”,将关键字序列:

      52,  498036145861972375

      调整为: 23491436, (52),58,  6197,  8075

      在调整过程中,设立了两个指针:low 和 high,它们的初值分别为:s 和 

      之后逐渐减小high,增加low,并保证 R[high].key 52,和 R[low].key 52,否则进行记录的“交换”。

      2.3 过程

      首先对无序的记录序列进行“一次划分”,之后分别对分割所得两个子序列“递归”进行快速排序。

       2.4 实现

    // 快速排序  O(nlogn) --->逆序O(n^2)
    // 调用QSort(1, n)   待排记录index = 1 ... n
    public int[] QSort(int low, int high){
        if(low < high){
            int p = Partition(low, high);
            QSort(low, p-1);
            QSort(p+1, high);
        }
        return needSort;
    }
    private int Partition(int low, int high){
        needSort[0] = needSort[low];
        while(low < high){
            while(low < high && needSort[high] >= needSort[0]) high--;
            needSort[low] = needSort[high];
            while(low < high && needSort[low] <= needSort[0]) low++;
            needSort[high] = needSort[low];
        }
        needSort[low] = needSort[0];
        return low;
    }

      2.5  复杂度分析

      2.5.1 时间复杂度

      ① 在最优情况下,Partition每次都划分得很均匀,如果排序n个关键字,其递归树(见2.5.2)的深度就为,即仅需递归log2n次,需要时间为T(n)的话,第一次Partition应该是需要对整个数组扫描一遍,做n次比较。然后,获得的枢纽将数组一分为二,那么各自还需要T(n/2)的时间(注意是最好情况,所以平分两半)。于是不断地划分下去,我们就有了下面的不等式推断。 

    T(n) 2T(n/2) + n, T(1) = 0

    T(n) 2( 2T(n/4) + n/2 ) + n = 4T(n/4) + 2n

    T(n) 4( 2T(n/8) + n/4 ) + 2n = 8T(n/8) + 3n

    ...

    T(n) nT(1) + (log2n) * n = O(nlogn)

      

      不知道为什么是“≤”而不是“=”? 待补充

      也就是说,在最优的情况下,快速排序算法的时间复杂度为O(nlogn)。

      ② 在最坏情况下,待排序的序列为正序或逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它是一颗斜树。此时需要执行n-1次递归调用,且第i次划分需要经过n-i次关键字的比较才能找到第i个记录,也就是枢纽的位置,因此比较次数为,最终其时间复杂度为O(n2)

      ③ 平均的情况,设枢纽的关键字应该在第k的位置(1kn),每个位置的概率相同,均为1/n,那么:

     

      数学归纳法可证明,其数量级为O(nlogn)。 待补充

      通常,快速排序被认为是在所有同数量级O(nlogn) 的排序方法中,其平均性能是最好的。但是,若待排记录的初始状态为按关键字有序或基本有序时,快速排序将蜕化为冒泡排序,其时间复杂度为O(n2)

      为避免出现这种情况,需在进行一次划分之前,进行“预处理”,即:先对R(s),keyR(t).keyR[└(s+t)/2┘].key,进行相互比较,然后取关键字为“三者之中”的记录为枢纽记录。

      2.5.2 空间效率

      举例:

     

      快速排序的递归过程可用生成一颗二叉树形象地给出,下图对应上面例子递归调用过程的二叉树。

     

      快速排序是递归的,每层递归调用时的指针和参数均要用栈来存放,递归调用层数与上述二叉树的深度一致。因而,存储开销在理想情况下为O(log2n),即树的高度,其空间复杂度也就为O(logn);在最坏情况下,需要进行n-1次递归调用,即二叉树是一个单链,为O(n);平均情况,空间复杂度也为O(logn)

      注意,由于关键字的比较和交换是跳跃进行的,因此,快速排序是一种不稳定的排序方法。

    参考:

      上课ppt

      《大话数据结构》程杰著  清华大学出版社,2011.6(2017.6 重印)

  • 相关阅读:
    贪心+stack Codeforces Beta Round #5 C. Longest Regular Bracket Sequence
    暴力/DP Codeforces Beta Round #22 (Div. 2 Only) B. Bargaining Table
    DFS Codeforces Round #299 (Div. 2) B. Tavas and SaDDas
    二分搜索 Codeforces Round #299 (Div. 2) C. Tavas and Karafs
    水题 Codeforces Round #299 (Div. 2) A. Tavas and Nafas
    数学 2015百度之星初赛2 HDOJ 5255 魔法因子
    贪心/数学 2015百度之星资格赛 1004 放盘子
    模拟 2015百度之星资格赛 1003 IP聚合
    rails安装使用版本控制器的原因。
    ActiveStorage. 英文书Learnrails5.2的案例,看如何放到云上。
  • 原文地址:https://www.cnblogs.com/datamining-bio/p/11961664.html
Copyright © 2011-2022 走看看