zoukankan      html  css  js  c++  java
  • 数论练习

    欧拉函数:

     

     欧拉函数筛法:

    const int N = 5e6 + 5;
    
    ull ans[N];
    void count(int n)        //求1~maxv的所有欧拉函数
    {
        memset(ans, 0, sizeof(ans));
        for (int i = 2; i < n; i++) {
            if (!ans[i])    //第一个ans[i] == 0 的都是素数
            {
                for (int j = i; j < n; j += i)    //素数的倍数
                {
                    if (!ans[j])
                        ans[j] = j;    //对素数倍数赋值
                    ans[j] = ans[j] / i * (i - 1);    //求欧拉函数的值
                }
            }
        }
        for (int i = 2; i < n; i++)
            ans[i] = ans[i - 1] + ans[i];
    }
    View Code

    1007:

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <cassert>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define ull             unsigned long long
    #define pii             pair<int, int>
    #define pll             pair<ll,ll>                 
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define forn(i, n)      for(int i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = acos(-1.0);
    const double eps = 1e-6;
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }
    /**********************************************************/
    
    const ll mod = 1e9 + 7;
    const int N = 5e6 + 5;
    
    ull ans[N];
    void count(int n)        //求1~maxv的所有欧拉函数
    {
        memset(ans, 0, sizeof(ans));
        for (int i = 2; i < n; i++) {
            if (!ans[i])    //第一个ans[i] == 0 的都是素数
            {
                for (int j = i; j < n; j += i)    //素数的倍数
                {
                    if (!ans[j])
                        ans[j] = j;    //对素数倍数赋值
                    ans[j] = ans[j] / i * (i - 1);    //求欧拉函数的值
                }
            }
        }
        for (int i = 2; i < n; i++)    //求平方和
            ans[i] = ans[i - 1] + ans[i] * ans[i];
    }
    
    int main()
    {
    #ifdef _DEBUG
        freopen("input.txt", "r", stdin);
        freopen("output.txt", "w", stdout);
    #endif
        count(N);
        int T;
        cin >> T;
        rep(i,1,T)
        {
            int a, b;
            cin >> a >> b;
            printf("Case %d: %llu
    ", i, ans[b] - ans[a - 1]);
        }
    }
    View Code
  • 相关阅读:
    经典网络还是VPC,开发者作何选择?
    经典网络还是VPC,开发者作何选择?
    文件系统的几种类型:ext3, swap, RAID, LVM
    文件系统的几种类型:ext3, swap, RAID, LVM
    ★商场上的十则寓言故事!
    ★商场上的十则寓言故事!
    【★】自制网络心理需求大排名!
    【★】自制网络心理需求大排名!
    自制mpls ldp实验
    自制mpls ldp实验
  • 原文地址:https://www.cnblogs.com/dealer/p/14351814.html
Copyright © 2011-2022 走看看