zoukankan      html  css  js  c++  java
  • algebra单元

    unit algebra;

    interface
    const MaxN=30;{You can increase it up to 100,not greater
    but each matrix variable would have size of
    sqr(MaxN)*sizeof(Real). It is possible to write
    unit for work with dinamically sized matrices,
    but i have no needs to do this.
    You can work with matrices with size less that MaxN,
    but while you work with this unit you must allocate
    memory for matrix MaxN x MaxN and leave rest of space
    unised}
    type vector=array[1..MaxN]of real;
    matrix=array[1..MaxN,1..MaxN]of real;
    sett=set of 1..MaxN;

    var algebrerr:boolean;
    function scalar(a,b:vector;n:integer):real;
    {Scalar multiplication of vectors a and b of n components}
    procedure systeq(a:matrix;b:vector;var x:vector;n:integer);
    { solving n line equation system A*X=B by Gauss method}
    { sets algebrerr to True if system cannot be solved}
    procedure matmult(a,b:matrix;var c:matrix;n:integer);
    { multiplication of two NxN matrixs A and B.Result - matrix C AxB=C}
    procedure matadd(a,b:matrix;var c :matrix;n:integer);
    { addition of two NxN matrixs A+B=C }
    procedure matconst(c:real;a:matrix;var b:matrix;n:integer);
    { multiplication matrix A on constant c cxA=B }
    procedure matcadd(c1:real;a1:matrix;c2:real;a2:matrix;var b:matrix;n:integer);
    { addition of two NxN matrixs with multiplication each of them on constant
    c1xA1+c2xA2=B }
    procedure matinv(a:matrix;var ainv:matrix;n:integer);
    { inversion of NxN matrix A}
    { sets algebrerr to True if matrix cannot be inverted}
    procedure matvec(a:matrix;b:vector;var c:vector;n:integer);
    { multiplication NxN matrix A to N-component vector B AxB=C}
    function det(a:matrix;n:integer):real;
    { determinant of NxN matrix }
    procedure compress(a:matrix;var b:matrix;n:integer;s:sett);
    { converse triangle matrix to simmetric,exclude rows and columns that is not
    in set s (type sett=set of 0..maxN)}
    function distance(a,b:vector;n:integer):real;
    { Calculate Euclide distantion in N-dimensioned space between A & B }
    Procedure Transpose(var A:Matrix;M,N:Integer);
    { Transpose MxN Matrix. Put result in the same place}
    Procedure EMatrix(var A:Matrix;N:Integer);
    {Fills matrix by 0 and main diagonal by 1}
    implementation
    function scalar(a,b:vector;n:integer):real;
    var i:integer;
    r:real;
    begin
    r:=0.0;
    for i:=1 to n do
    r:=r+a[i]*b[i];
    scalar:=r;
    end;
    procedure systeq(a:matrix;b:vector;var x:vector;n:integer);
    var i,j,k:integer;
    max:real;
    begin
    algebrerr:=false;
    { Conversion matrix to triangle }
    for i:=1 to n do
    begin
    max:=abs(a[i,i]);k:=i;
    for j:=succ(i) to n do
    if abs(a[j,i])>max then
    begin
    max:=abs(a[j,i]);k:=j
    end;
    if max<1E-10 then begin algebrerr:=true;exit end;
    if k<>i then
    begin
    for j:=i to n do
    begin
    max:=a[k,j];
    a[k,j]:=a[i,j];
    a[i,j]:=max;
    end;
    max:=b[k];
    b[k]:=b[i];
    b[i]:=max;
    end;
    for j:=succ(i) to n do
    a[i,j]:=a[i,j]/a[i,i];
    b[i]:=b[i]/a[i,i];
    for j:=succ(i) to n do
    begin
    for k:=succ(i) to n do
    a[j,k]:=a[j,k]-a[i,k]*a[j,i];
    b[j]:=b[j]-b[i]*a[j,i];
    end;
    end;
    { X calculation}
    x[n]:=b[n];
    for i:=pred(n) downto 1 do
    begin
    max:=b[i];
    for j:=succ(i) to n do
    max:=max-a[i,j]*x[j];
    x[i]:=max;
    end;
    end;
    procedure matmult(a,b:matrix;var c:matrix;n:integer);
    var i,j,k:integer;r:real;
    begin
    for i:=1 to n do
    for j:=1 to n do
    begin
    r:=0.0;
    for k:=1 to n do
    r:=r+a[i,k]*b[k,j];
    c[i,j]:=r;
    end;
    end;

    procedure matadd(a,b:matrix;var c :matrix;n:integer);
    var i,j:integer;
    begin
    for i:=1 to n do
    for j:=1 to n do
    c[i,j]:=a[i,j]+b[i,j];
    end;

    procedure matinv(a:matrix;var ainv:matrix;n:integer);
    var i,j,k:integer;
    e:matrix;
    max:real;
    begin
    algebrerr:=false;
    { creating single matrix }
    for i:=1 to n do
    for j:=1 to n do
    e[i,j]:=0.0;
    for i:=1 to n do
    e[i,i]:=1.0;
    { Conversion matrix to triangle }
    for i:=1 to n do
    {1} begin
    max:=abs(a[i,i]);k:=i;
    for j:=succ(i) to n do
    if abs(a[j,i])>max then
    {2} begin
    max:=abs(a[j,i]);k:=j
    {2} end;
    if max<1E-10 then begin algebrerr:=true;exit end;
    if k<>i then
    {2} begin
    for j:=i to n do
    {3} begin
    max:=a[k,j];
    a[k,j]:=a[i,j];
    a[i,j]:=max;
    {3} end;
    for j:=1 to n do
    {3} begin
    max:=e[k,j];
    e[k,j]:=e[i,j];
    e[i,j]:=max;
    {3} end;
    {2} end;
    for j:=succ(i) to n do
    a[i,j]:=a[i,j]/a[i,i];
    for k:=1 to n do
    e[i,k]:=e[i,k]/a[i,i];
    for j:=succ(i) to n do
    {2} begin
    for k:=succ(i) to n do
    a[j,k]:=a[j,k]-a[i,k]*a[j,i];
    for k:=1 to n do
    e[j,k]:=e[j,k]-e[i,k]*a[j,i];
    {2} end;
    {1} end;
    { ainv calculation}
    for k:=1 to n do
    {1} begin
    ainv[n,k]:=e[n,k];
    for i:=pred(n) downto 1 do
    {2} begin
    max:=e[i,k];
    for j:=succ(i) to n do
    max:=max-a[i,j]*ainv[j,k];
    ainv[i,k]:=max;
    {2} end;
    {1} end;
    end;
    procedure matvec(a:matrix;b:vector;var c:vector;n:integer);
    var i,j:integer;r:real;
    begin
    for i:=1 to n do
    begin
    r:=0.0;
    for j:=1 to n do
    r:=r+a[i,j]*b[j];
    c[i]:=r;
    end;
    end;
    function det(a:matrix;n:integer):real;
    var i,j,k:integer;d:real;
    begin
    for i:=1 to pred(n) do
    begin
    if abs(a[i,i])<1E-10 then begin det:=0.0;exit end;
    for j:=succ(i) to n do
    begin
    d:=a[j,i]/a[i,i];
    for k:=i to n do
    a[j,k]:=a[j,k]-d*a[i,k];
    end;
    end;
    d:=1.0;
    for i:=1 to n do
    d:=d*a[i,i];
    det:=d;
    end;
    procedure matconst(c:real;a:matrix;var b:matrix;n:integer);
    var i,j:integer;
    begin
    for i:=1 to n do
    for j:=1 to n do
    b[i,j]:=c*a[i,j];
    end;
    procedure matcadd(c1:real;a1:matrix;c2:real;a2:matrix;var b:matrix;n:integer);
    var i,j:integer;
    begin
    for i:=1 to n do
    for j:=1 to n do
    b[i,j]:=c1*a1[i,j]+c2*a2[i,j];
    end;
    procedure compress(a:matrix;var b:matrix;n:integer;s:sett);
    var i,j,k,l:integer;
    begin
    k:=1;
    for i:=1 to pred(n) do
    if i in s then
    begin
    l:=1;
    b[k,k]:=a[i,i];
    for j:=succ(i) to n do
    if j in s then
    begin
    b[k,l]:=a[i,j];
    b[l,k]:=a[i,j];
    inc(l);
    end;
    inc(k);
    end;
    end;
    function distance(a,b:vector;n:integer):real;
    var i:integer;r:real;
    begin
    r:=0;
    for i:=1 to n do
    r:=r+sqr(a[i]-b[i]);
    distance:=sqrt(r);
    end;
    Procedure Transpose(var A:Matrix;M,N:Integer);
    var i,j:Integer;Tmp:Real;
    begin
    For i:=1 to n do
    for j:=i+1 to m do
    begin
    Tmp:=A[i,j];
    A[i,j]:=A[j,i];
    A[J,i]:=Tmp;
    end;
    end;
    Procedure EMatrix(var A:Matrix;N:Integer);
    var I:Integer;
    begin
    FillChar(A,SizeOf(A),0);
    For i:=1 to n do
    A[i,i]:=1.0;
    end;

    end.

  • 相关阅读:
    645. 错误的集合
    88. 合并两个有序数组
    125. 验证回文串
    常用的浏览器
    网页的相关概念
    HTML简介
    商城搜索解决方案
    用VirtualBox安装Centos7
    Eureka自我保护机制
    服务发现Discovery(查看运行的服务)
  • 原文地址:https://www.cnblogs.com/djcsch2001/p/2035830.html
Copyright © 2011-2022 走看看